
Bocquet, L. Nanofluidics coming of age. Nat. Mater. 19, 254–256 (2020).
Google Scholar
Aluru, N. R. et al. Fluids and electrolytes under confinement in single-digit nanopores. Chem. Rev. 123, 2737–2831 (2023).
Google Scholar
Deshmukh, A. et al. Membrane distillation at the water-energy nexus: limits, opportunities, and challenges. Energy Environ. Sci. 11, 1177–1196 (2018).
Google Scholar
Li, Z., Siddiqi, A., Anadon, L. D. & Narayanamurti, V. Towards sustainability in water-energy nexus: ocean energy for seawater desalination. Renew. Sustain. Energy Rev. 82, 3833–3847 (2018).
Google Scholar
Esfandiar, A. et al. Size effect in ion transport through angstrom-scale slits. Science 358, 511–513 (2017).
Google Scholar
Prakash, S., Pinti, M. & Bhushan, B. Theory, fabrication and applications of microfluidic and nanofluidic biosensors. Phil. Trans. R. Soc. A 370, 2269–2303 (2012).
Google Scholar
Piruska, A., Gong, M., Sweedler, J. V. & Bohn, P. W. Nanofluidics in chemical analysis. Chem. Soc. Rev. 39, 1060–1072 (2010).
Google Scholar
Ries, L. et al. Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. Nat. Mater. 18, 1112–1117 (2019).
Google Scholar
Li, X. et al. Nature gives the best solution for desalination: aquaporin-based hollow fiber composite membrane with superior performance. J. Membr. Sci. 494, 68–77 (2015).
Google Scholar
Törnroth-Horsefield, S. et al. Structural mechanism of plant aquaporin gating. Nature 439, 688–694 (2006).
Google Scholar
Emmerich, T. et al. Enhanced nanofluidic transport in activated carbon nanoconduits. Nat. Mater. 21, 696–702 (2022).
Google Scholar
Robin, P. et al. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 379, 161–167 (2023).
Google Scholar
Xu, Y. Nanofluidics: a new arena for materials science. Adv. Mater. 30, 1702419 (2018).
Google Scholar
Herman, A., Ager, J. W., Ardo, S. & Segev, G. Ratchet-based ion pumps for selective ion separations. PRX Energy 2, 023001 (2023).
Google Scholar
Huang, X., Kong, X., Wen, L. & Jiang, L. Bioinspired ionic diodes: from unipolar to bipolar. Adv. Funct. Mater. 28, 1801079 (2018).
Google Scholar
Karnik, R., Duan, C., Castelino, K., Daiguji, H. & Majumdar, A. Rectification of ionic current in a nanofluidic diode. Nano Lett. 7, 547–551 (2007).
Google Scholar
Cheng, L.-J. & Guo, L. J. Nanofluidic diodes. Chem. Soc. Rev. 39, 923–938 (2010).
Google Scholar
Poggioli, A. R., Siria, A. & Bocquet, L. Beyond the tradeoff: dynamic selectivity in ionic transport and current rectification. J. Phys. Chem. B 123, 1171–1185 (2019).
Google Scholar
Montes de Oca, J. M., Dhanasekaran, J., Córdoba, A., Darling, S. B. & de Pablo, J. J. Ionic transport in electrostatic Janus membranes. An explicit solvent molecular dynamic simulation. ACS Nano 16, 3768–3775 (2022).
Google Scholar
Picallo, C. B., Gravelle, S., Joly, L., Charlaix, E. & Bocquet, L. Nanofluidic osmotic diodes: theory and molecular dynamics simulations. Phys. Rev. Lett. 111, 244501 (2013).
Google Scholar
Ratschow, A. D., Pandey, D., Liebchen, B., Bhattacharyya, S. & Hardt, S. Resonant nanopumps: ac gate voltages in conical nanopores induce directed electrolyte flow. Phys. Rev. Lett. 129, 264501 (2022).
Google Scholar
Laohakunakorn, N. et al. A Landau–Squire nanojet. Nano Lett. 13, 5141–5146 (2013).
Google Scholar
Wu, X., Ramiah Rajasekaran, P. & Martin, C. R. An alternating current electroosmotic pump based on conical nanopore membranes. ACS Nano 10, 4637–4643 (2016).
Google Scholar
Alizadeh, A., Hsu, W., Wang, M. & Daiguji, H. Electroosmotic flow: from microfluidics to nanofluidics. Electrophoresis 42, 834–868 (2021).
Google Scholar
Wen, Q. et al. Electric‐field‐induced ionic sieving at planar graphene oxide heterojunctions for miniaturized water desalination. Adv. Mater. 32, 1903954 (2020).
Google Scholar
Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).
Google Scholar
Mi, B. Scaling up nanoporous graphene membranes. Science 364, 1033–1034 (2019).
Google Scholar
Lee, B., Wang, L., Wang, Z., Cooper, N. J. & Elimelech, M. Directing the research agenda on water and energy technologies with process and economic analysis. Energy Environ. Sci. 16, 714–722 (2023).
Google Scholar
Marbach, S. & Bocquet, L. Osmosis, from molecular insights to large-scale applications. Chem. Soc. Rev. 48, 3102–3144 (2019).
Google Scholar
Devasenathipathy, S. & Santiago, J. G. in Microscale Diagnostic Techniques (ed. Breuer, K. S.) 113–154 (Springer, 2005); https://doi.org/10.1007/3-540-26449-3_3
Huisman, I. Electroviscous effects, streaming potential, and zeta potential in polycarbonate track-etched membranes. J. Membr. Sci. 178, 79–92 (2000).
Google Scholar
Van Der Heyden, F. H. J., Stein, D. & Dekker, C. Streaming currents in a single nanofluidic channel. Phys. Rev. Lett. 95, 116104 (2005).
Google Scholar
Jia, F. et al. Advances in graphene oxide membranes for water treatment. Nano Res. 15, 6636–6654 (2022).
Google Scholar
Yang, Q. et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 16, 1198–1202 (2017).
Google Scholar
Béguin, F., Presser, V., Balducci, A. & Frackowiak, E. Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014).
Google Scholar
Suss, M. E. & Presser, V. Water desalination with energy storage electrode materials. Joule 2, 10–15 (2018).
Google Scholar
Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).
Google Scholar
Geise, G. M., Park, H. B., Sagle, A. C., Freeman, B. D. & McGrath, J. E. Water permeability and water/salt selectivity tradeoff in polymers for desalination. J. Membr. Sci. 369, 130–138 (2011).
Google Scholar
Ober, P. et al. Liquid flow reversibly creates a macroscopic surface charge gradient. Nat. Commun. 12, 4102 (2021).
Google Scholar
Werkhoven, B. L., Everts, J. C., Samin, S. & van Roij, R. Flow-induced surface charge heterogeneity in electrokinetics due to Stern-layer conductance coupled to reaction kinetics. Phys. Rev. Lett. 120, 264502 (2018).
Google Scholar
Biesheuvel, P. M., Porada, S., Elimelech, M. & Dykstra, J. E. Tutorial review of reverse osmosis and electrodialysis. J. Membr. Sci. 647, 120221 (2022).
Google Scholar
Wang, L. et al. Water transport in reverse osmosis membranes is governed by pore flow, not a solution-diffusion mechanism. Sci. Adv. 9, eadf8488 (2023).
Google Scholar
Biesheuvel, P. M., Rutten, S. B., Ryzhkov, I. I., Porada, S. & Elimelech, M. Theory for salt transport in charged reverse osmosis membranes: novel analytical equations for desalination performance and experimental validation. Desalination 557, 116580 (2023).
Google Scholar
Abdelghani-Idrissi, S. Dataset for the manuscript entitled ‘Resonant osmotic diodes for voltage-induced water filtration across composite membranes’. Zenodo https://doi.org/10.5281/ZENODO.15277891 (2025).