• June 23, 2025
  • Live Match Score
  • 0


  • Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meng, Z., Stolz, R. M., Mendecki, L. & Mirica, K. A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 119, 478–598 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pomerantseva, E. & Gogotsi, Y. Two-dimensional heterostructures for energy storage. Nat. Energy 2, 17089 (2017).

    Article 
    CAS 

    Google Scholar 

  • Chia, X. & Pumera, M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 1, 909–921 (2018).

    Article 
    CAS 

    Google Scholar 

  • Zhang, H. & Han, Y. Compression-induced polycrystal-glass transition in binary crystals. Phys. Rev. X 8, 041023 (2018).

    CAS 

    Google Scholar 

  • Cocke, D. L. Heterogeneous catalysis by amorphous materials. JOM 38, 70–75 (1986).

    Article 
    CAS 

    Google Scholar 

  • Yang, Z., Hao, J. & Lau, S. P. Synthesis, properties, and applications of 2D amorphous inorganic materials. J. Appl. Phys. 127, 220901 (2020).

  • He, Y. et al. Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production. Nat. Catal. 5, 212–221 (2022).

    Article 
    CAS 

    Google Scholar 

  • Toh, C. T. et al. Synthesis and properties of free-standing monolayer amorphous carbon. Nature 577, 199–203 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tian, H. et al. Disorder-tuned conductivity in amorphous monolayer carbon. Nature 615, 56–61 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hong, S. et al. Ultralow-dielectric-constant amorphous boron nitride. Nature 582, 511–514 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, T., Wang, J., Wu, P., Lu, A.-Y. & Kong, J. Vapour-phase deposition of two-dimensional layered chalcogenides. Nat. Rev. Mater. 8, 799–821 (2023).

    Article 
    CAS 

    Google Scholar 

  • Sun, L. et al. Chemical vapour deposition. Nat. Rev. Methods Primers 1, 5 (2021).

    Article 
    CAS 

    Google Scholar 

  • Xu, M. et al. Reconfiguring nucleation for CVD growth of twisted bilayer MoS2 with a wide range of twist angles. Nat. Commun. 15, 562 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Greene, J. E. in Handbook of Deposition Technologies for Films and Coatings (Third Edition) (ed. Martin, P. M.) 554–620 (William Andrew Publishing, 2010).

  • Li, S. et al. Vapour–liquid–solid growth of monolayer MoS2 nanoribbons. Nat. Mater. 17, 535–542 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Suzuki, H. et al. Wafer-scale fabrication and growth dynamics of suspended graphene nanoribbon arrays. Nat. Commun. 7, 11797 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nanda, K. K., Sahu, S. N. & Behera, S. N. Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys. Rev. A 66, 013208 (2002).

    Article 

    Google Scholar 

  • Li, K., Wang, T., Wang, W. & Gao, X. Lattice vibration properties of MoS2/PtSe2 heterostructures. J. Alloy. Compd. 820, 153192 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhou, J. et al. Epitaxial synthesis of monolayer PtSe2 single crystal on MoSe2 with strong interlayer coupling. ACS Nano 13, 10929–10938 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hu, D. et al. Unveiling the layer-dependent catalytic activity of PtSe2 atomic crystals for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 58, 6977–6981 (2019).

    Article 
    CAS 

    Google Scholar 

  • Huang, L. et al. Catalyzed kinetic growth in two-dimensional MoS2. J. Am. Chem. Soc. 142, 13130–13135 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, Q. et al. High chemical potential driven amorphization of Pd-based nanoalloys. Small Methods 7, 2201513 (2023).

    Article 
    CAS 

    Google Scholar 

  • Yuan, Q., Xu, Z., Yakobson, B. I. & Ding, F. Efficient defect healing in catalytic carbon nanotube growth. Phys. Rev. Lett. 108, 245505 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Li, X. et al. Advances in heterogeneous single-cluster catalysis. Nat. Rev. Chem. 7, 754–767 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, X. et al. Single-atom engineering to ignite 2D transition metal dichalcogenide based catalysis: fundamentals, progress, and beyond. Chem. Rev. 122, 1273–1348 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, D.-Q. et al. Tailoring interfacial charge transfer of epitaxially grown IR clusters for boosting hydrogen oxidation reaction. Adv. Energy Mater. 13, 2202913 (2023).

    Article 
    CAS 

    Google Scholar 

  • Shi, Y. et al. Site-specific electrodeposition enables self-terminating growth of atomically dispersed metal catalysts. Nat. Commun. 11, 4558 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lou, Y. et al. Pocketlike active site of Rh1/MoS2 single-atom catalyst for selective crotonaldehyde hydrogenation. J. Am. Chem. Soc. 141, 19289–19295 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Luo, Z. et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat. Commun. 9, 2120 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, K. S. et al. Growth-based monolithic 3D integration of single-crystal 2D semiconductors. Nature 636, 615–621 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, K. et al. Epitaxial substitution of metal iodides for low-temperature growth of two-dimensional metal chalcogenides. Nat. Nanotechnol. 18, 448–455 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qin, B. et al. General low-temperature growth of two-dimensional nanosheets from layered and nonlayered materials. Nat. Commun. 14, 304 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xia, H. et al. The practice of reaction window in an electrocatalytic on-chip microcell. Nat. Commun. 14, 6838 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    CAS 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    CAS 

    Google Scholar 

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar 

  • Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article 
    CAS 

    Google Scholar 

  • Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article 
    CAS 

    Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, V., Xu, N., Liu, J.-C., Tang, G. & Geng, W.-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

    Article 
    CAS 

    Google Scholar 

  • Borcia, R., Borcia, I. D. & Bestehorn, M. Static and dynamic contact angles—a phase field modelling. Eur. Phys. J. 166, 127–131 (2009).

    Google Scholar 

  • He, Y. et al. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun. 11, 57 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karma, A. & Plapp, M. Spiral surface growth without desorption. Phys. Rev. Lett. 81, 4444–4447 (1998).

    Article 
    CAS 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *