
Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).
Google Scholar
Meng, Z., Stolz, R. M., Mendecki, L. & Mirica, K. A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 119, 478–598 (2019).
Google Scholar
Pomerantseva, E. & Gogotsi, Y. Two-dimensional heterostructures for energy storage. Nat. Energy 2, 17089 (2017).
Google Scholar
Chia, X. & Pumera, M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 1, 909–921 (2018).
Google Scholar
Zhang, H. & Han, Y. Compression-induced polycrystal-glass transition in binary crystals. Phys. Rev. X 8, 041023 (2018).
Google Scholar
Cocke, D. L. Heterogeneous catalysis by amorphous materials. JOM 38, 70–75 (1986).
Google Scholar
Yang, Z., Hao, J. & Lau, S. P. Synthesis, properties, and applications of 2D amorphous inorganic materials. J. Appl. Phys. 127, 220901 (2020).
He, Y. et al. Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production. Nat. Catal. 5, 212–221 (2022).
Google Scholar
Toh, C. T. et al. Synthesis and properties of free-standing monolayer amorphous carbon. Nature 577, 199–203 (2020).
Google Scholar
Tian, H. et al. Disorder-tuned conductivity in amorphous monolayer carbon. Nature 615, 56–61 (2023).
Google Scholar
Hong, S. et al. Ultralow-dielectric-constant amorphous boron nitride. Nature 582, 511–514 (2020).
Google Scholar
Zhang, T., Wang, J., Wu, P., Lu, A.-Y. & Kong, J. Vapour-phase deposition of two-dimensional layered chalcogenides. Nat. Rev. Mater. 8, 799–821 (2023).
Google Scholar
Sun, L. et al. Chemical vapour deposition. Nat. Rev. Methods Primers 1, 5 (2021).
Google Scholar
Xu, M. et al. Reconfiguring nucleation for CVD growth of twisted bilayer MoS2 with a wide range of twist angles. Nat. Commun. 15, 562 (2024).
Google Scholar
Greene, J. E. in Handbook of Deposition Technologies for Films and Coatings (Third Edition) (ed. Martin, P. M.) 554–620 (William Andrew Publishing, 2010).
Li, S. et al. Vapour–liquid–solid growth of monolayer MoS2 nanoribbons. Nat. Mater. 17, 535–542 (2018).
Google Scholar
Suzuki, H. et al. Wafer-scale fabrication and growth dynamics of suspended graphene nanoribbon arrays. Nat. Commun. 7, 11797 (2016).
Google Scholar
Nanda, K. K., Sahu, S. N. & Behera, S. N. Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys. Rev. A 66, 013208 (2002).
Google Scholar
Li, K., Wang, T., Wang, W. & Gao, X. Lattice vibration properties of MoS2/PtSe2 heterostructures. J. Alloy. Compd. 820, 153192 (2020).
Google Scholar
Zhou, J. et al. Epitaxial synthesis of monolayer PtSe2 single crystal on MoSe2 with strong interlayer coupling. ACS Nano 13, 10929–10938 (2019).
Google Scholar
Hu, D. et al. Unveiling the layer-dependent catalytic activity of PtSe2 atomic crystals for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 58, 6977–6981 (2019).
Google Scholar
Huang, L. et al. Catalyzed kinetic growth in two-dimensional MoS2. J. Am. Chem. Soc. 142, 13130–13135 (2020).
Google Scholar
Jiang, Q. et al. High chemical potential driven amorphization of Pd-based nanoalloys. Small Methods 7, 2201513 (2023).
Google Scholar
Yuan, Q., Xu, Z., Yakobson, B. I. & Ding, F. Efficient defect healing in catalytic carbon nanotube growth. Phys. Rev. Lett. 108, 245505 (2012).
Google Scholar
Li, X. et al. Advances in heterogeneous single-cluster catalysis. Nat. Rev. Chem. 7, 754–767 (2023).
Google Scholar
Wang, X. et al. Single-atom engineering to ignite 2D transition metal dichalcogenide based catalysis: fundamentals, progress, and beyond. Chem. Rev. 122, 1273–1348 (2022).
Google Scholar
Liu, D.-Q. et al. Tailoring interfacial charge transfer of epitaxially grown IR clusters for boosting hydrogen oxidation reaction. Adv. Energy Mater. 13, 2202913 (2023).
Google Scholar
Shi, Y. et al. Site-specific electrodeposition enables self-terminating growth of atomically dispersed metal catalysts. Nat. Commun. 11, 4558 (2020).
Google Scholar
Lou, Y. et al. Pocketlike active site of Rh1/MoS2 single-atom catalyst for selective crotonaldehyde hydrogenation. J. Am. Chem. Soc. 141, 19289–19295 (2019).
Google Scholar
Luo, Z. et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat. Commun. 9, 2120 (2018).
Google Scholar
Kim, K. S. et al. Growth-based monolithic 3D integration of single-crystal 2D semiconductors. Nature 636, 615–621 (2024).
Google Scholar
Zhang, K. et al. Epitaxial substitution of metal iodides for low-temperature growth of two-dimensional metal chalcogenides. Nat. Nanotechnol. 18, 448–455 (2023).
Google Scholar
Qin, B. et al. General low-temperature growth of two-dimensional nanosheets from layered and nonlayered materials. Nat. Commun. 14, 304 (2023).
Google Scholar
Xia, H. et al. The practice of reaction window in an electrocatalytic on-chip microcell. Nat. Commun. 14, 6838 (2023).
Google Scholar
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Google Scholar
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Google Scholar
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Google Scholar
Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).
Google Scholar
Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).
Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Google Scholar
Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).
Google Scholar
Wang, V., Xu, N., Liu, J.-C., Tang, G. & Geng, W.-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).
Google Scholar
Borcia, R., Borcia, I. D. & Bestehorn, M. Static and dynamic contact angles—a phase field modelling. Eur. Phys. J. 166, 127–131 (2009).
He, Y. et al. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun. 11, 57 (2020).
Google Scholar
Karma, A. & Plapp, M. Spiral surface growth without desorption. Phys. Rev. Lett. 81, 4444–4447 (1998).
Google Scholar