• July 2, 2025
  • Live Match Score
  • 0


  • Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zewail, A. H. Four-dimensional electron microscopy. Science 328, 187–193 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hassan, M. T., Baskin, J. S., Liao, B. & Zewail, A. H. High-temporal-resolution electron microscopy for imaging ultrafast electron dynamics. Nat. Photonics 11, 425–430 (2017).

    Article 
    CAS 

    Google Scholar 

  • Kurman, Y. et al. Spatiotemporal imaging of 2D polariton wave packet dynamics using free electrons. Science 372, 1181–1186 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gulde, M. et al. Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics. Science 345, 200–204 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Priebe, K. E. et al. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy. Nat. Photonics 11, 793–797 (2017).

    Article 
    CAS 

    Google Scholar 

  • Domroese, T. et al. Light-induced hexatic state in a layered quantum material. Nat. Mater. 22, 1345–1351 (2023).

    Article 
    CAS 

    Google Scholar 

  • Horstmann, J. G. et al. Coherent control of a surface structural phase transition. Nature 583, 232–234 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Danz, T., Domrose, T. & Ropers, C. Ultrafast nanoimaging of the order parameter in a structural phase transition. Science 371, 371–374 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, H. et al. Attosecond field emission. Nature 613, 662–666 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dienstbier, P. et al. Tracing attosecond electron emission from a nanometric metal tip. Nature 616, 702–706 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Herink, G., Solli, D. R., Gulde, M. & Ropers, C. Field-driven photoemission from nanostructures quenches the quiver motion. Nature 483, 190–193 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Krueger, M., Schenk, M. & Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011).

    Article 
    CAS 

    Google Scholar 

  • Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Paulus, G. G., Becker, W. & Walther, H. Classical rescattering effects in 2-color above-threshold ionization. Phys. Rev. A 52, 4043–4053 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bormann, R., Gulde, M., Weismann, A., Yalunin, S. V. & Ropers, C. Tip-enhanced strong-field photoemission. Phys. Rev. Lett. 105, 147601 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yanagisawa, H. et al. Optical control of field-emission sites by femtosecond laser pulses. Phys. Rev. Lett. 103, 257603 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Hommelhoff, P., Sortais, Y., Aghajani-Talesh, A. & Kasevich, M. A. Field emission tip as a nanometer source of free electron femtosecond pulses. Phys. Rev. Lett. 96, 077401 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Ropers, C., Solli, D. R., Schulz, C. P., Lienau, C. & Elsaesser, T. Localized multiphoton emission of femtosecond electron pulses from metal nanotips. Phys. Rev. Lett. 98, 043907 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Musumeci, P. et al. Multiphoton photoemission from a copper cathode illuminated by ultrashort laser pulses in an RF photoinjector. Phys. Rev. Lett. 104, 084801 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shafir, D. et al. Resolving the time when an electron exits a tunnelling barrier. Nature 485, 343–346 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pedatzur, O. et al. Attosecond tunnelling interferometry. Nat. Phys. 11, 815–819 (2015).

    Article 
    CAS 

    Google Scholar 

  • Nabben, D., Kuttruff, J., Stolz, L., Ryabov, A. & Baum, P. Attosecond electron microscopy of sub-cycle optical dynamics. Nature 619, 63–67 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schenk, M., Krueger, M. & Hommelhoff, P. Strong-field above-threshold photoemission from sharp metal tips. Phys. Rev. Lett. 105, 257601 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Li, C. et al. Extreme nonlinear strong-field photoemission from carbon nanotubes. Nat. Commun. 10, 4891 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, C. et al. Carbon nanotubes as an ultrafast emitter with a narrow energy spread at optical frequency. Adv. Mater. 29, 1701580 (2017).

    Article 

    Google Scholar 

  • De Jonge, N. et al. High brightness electron beam from a multi-walled carbon nanotube. Nature 420, 393–395 (2002).

    Article 
    PubMed 

    Google Scholar 

  • De Jonge, N. & Bonard, J. M. Carbon nanotube electron sources and applications. Philos. Trans. R. Soc. Lond. A 362, 2239–2266 (2004).

    Article 

    Google Scholar 

  • Saito, Y. & Uemura, S. Field emission from carbon nanotubes and its application to electron sources. Carbon 38, 169–182 (2000).

    Article 
    CAS 

    Google Scholar 

  • Achermann, M., Bartko, A. P., Hollingsworth, J. A. & Klimov, V. I. The effect of Auger heating on intraband carrier relaxation in semiconductor quantum rods. Nat. Phys. 2, 557–561 (2006).

    Article 
    CAS 

    Google Scholar 

  • Keldysh, L. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314 (1965).

    Google Scholar 

  • Bunkin, F. & Fedorov, M. Cold emission of electrons from the surface of a metal in a strong radiation field. Sov. Phys. JETP 21, 896 (1965).

    Google Scholar 

  • Zhang, P. & Lau, Y. Y. Ultrafast strong-field photoelectron emission from biased metal surfaces: exact solution to time-dependent Schrödinger equation. Sci. Rep. 6, 19894 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Piglosiewicz, B. et al. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nat. Photonics 8, 37–42 (2014).

    Article 
    CAS 

    Google Scholar 

  • Bionta, M. R. et al. On-chip sampling of optical fields with attosecond resolution. Nat. Photonics 15, 456–460 (2021).

    Article 
    CAS 

    Google Scholar 

  • Tan, S. J., Argondizzo, A., Wang, C., Cui, X. F. & Petek, H. Ultrafast multiphoton thermionic photoemission from graphite. Phys. Rev. X 7, 011004 (2017).

    Google Scholar 

  • Liu, K. H. et al. Quantum-coupled radial-breathing oscillations in double-walled carbon nanotubes. Nat. Commun. 4, 1375 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article 
    CAS 

    Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Andrade, X. et al. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems. Phys. Chem. Chem. Phys. 17, 31371–31396 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Onida, G., Reining, L. & Rubio, A. Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74, 601 (2002).

    Article 
    CAS 

    Google Scholar 

  • D’Agosta, R. & Vignale, G. Relaxation in time-dependent current-density-functional theory. Phys. Rev. Lett. 96, 016405 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Hartwigsen, C., Gœdecker, S. & Hutter, J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641 (1998).

    Article 
    CAS 

    Google Scholar 

  • De Giovannini, U., Larsen, A. H. & Rubio, A. Modeling electron dynamics coupled to continuum states in finite volumes with absorbing boundaries. Eur. Phys. J. B 88, 56 (2015).

    Article 

    Google Scholar 

  • Wang, F. et al. The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maultzsch, J. et al. Exciton binding energies in carbon nanotubes from two-photon photoluminescence. Phys. Rev. B 72, 241402 (2005).

    Article 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *