
Draxl, C. & Scheffler, M. The NOMAD laboratory: from data sharing to artificial intelligence. J. Phys. Mater. 2, 036001 (2019).
Google Scholar
Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials design and discovery with high-throughput density functional theory: the Open Quantum Materials Database (OQMD). JOM 65, 1501–1509 (2013).
Google Scholar
Kirklin, S. et al. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. npj Comput. Mater. 1, 15010 (2015).
Google Scholar
Curtarolo, S. et al. AFLOW: an automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2012).
Google Scholar
Calderon, C. E. et al. The AFLOW standard for high-throughput materials science calculations. Comput. Mater. Sci. 108, 233–238 (2015).
Google Scholar
Choudhary, K. et al. The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design. npj Comput. Mater. 6, 173 (2020).
Google Scholar
Talirz, L. et al. Materials Cloud, a platform for open computational science. Sci. Data 7, 299 (2020).
Google Scholar
Yang, R. X. et al. Big data in a nano world: a review on computational, data-driven design of nanomaterials structures, properties, and synthesis. ACS Nano 16, 19873–19891 (2022).
Google Scholar
Qu, X. et al. The Electrolyte Genome project: a big data approach in battery materials discovery. Comput. Mater. Sci. 103, 56–67 (2015).
Google Scholar
Cheng, L. et al. Accelerating electrolyte discovery for energy storage with high-throughput screening. J. Phys. Chem. Lett. 6, 283–291 (2015).
Google Scholar
Spotte-Smith, E. W. C. et al. A database of molecular properties integrated in the Materials Project. Digit. Discov. 2, 1862–1882 (2023).
Google Scholar
Huo, H. et al. Semi-supervised machine-learning classification of materials synthesis procedures. npj Comput. Mater. 5, 62 (2019).
Google Scholar
Kononova, O. et al. Text-mined dataset of inorganic materials synthesis recipes. Sci. Data 6, 203 (2019).
Google Scholar
He, T. et al. Similarity of precursors in solid-state synthesis as text-mined from scientific literature. Chem. Mater. 32, 7861–7873 (2020).
Google Scholar
Zhou, F., Cococcioni, M., Marianetti, C. A., Morgan, D. & Ceder, G. First-principles prediction of redox potentials in transition-metal compounds with LDA + U. Phys. Rev. B 70, 235121 (2004).
Google Scholar
Adams, S. & Rao, R. P. High power lithium ion battery materials by computational design: high power Li ion battery materials by computational design. Phys. Status Solidi A 208, 1746–1753 (2011).
Google Scholar
Wang, L., Maxisch, T. & Ceder, G. A first-principles approach to studying the thermal stability of oxide cathode materials. Chem. Mater. 19, 543–552 (2007).
Google Scholar
Ong, S. P., Jain, A., Hautier, G., Kang, B. & Ceder, G. Thermal stabilities of delithiated olivine MPO4 (M = Fe, Mn) cathodes investigated using first principles calculations. Electrochem. Commun. 12, 427–430 (2010).
Google Scholar
Rosen, A. S. et al. High-throughput predictions of metal–organic framework electronic properties: theoretical challenges, graph neural networks, and data exploration. npj Comput. Mater. 8, 112 (2022).
Google Scholar
Chanussot, L. et al. Open Catalyst 2020 (OC20) dataset and community challenges. ACS Catal. 11, 6059–6072 (2021).
Google Scholar
Furness, J. W., Kaplan, A. D., Ning, J., Perdew, J. P. & Sun, J. Accurate and numerically efficient r2SCAN meta-generalized gradient approximation. J. Phys. Chem. Lett. 11, 8208–8215 (2020).
Google Scholar
Kingsbury, R. et al. Performance comparison of r2SCAN and SCAN metaGGA density functionals for solid materials via an automated, high-throughput computational workflow. Phys. Rev. Mater. 6, 013801 (2022).
Google Scholar
Kingsbury, R. S. et al. A flexible and scalable scheme for mixing computed formation energies from different levels of theory. npj Comput. Mater. 8, 195 (2022).
Google Scholar
Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. Recent developments in the Inorganic Crystal Structure Database: theoretical crystal structure data and related features. J. Appl. Crystallogr. 52, 918–925 (2019).
Google Scholar
Villars, P. et al. The Pauling File, Binaries Edition. J. Alloys Compd. 367, 293–297 (2004).
Google Scholar
Gražulis, S. et al. Crystallography Open Database – an open-access collection of crystal structures. J. Appl. Crystallogr. 42, 726–729 (2009).
Google Scholar
Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
Google Scholar
Jacobsson, T. J. et al. An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles. Nat. Energy 7, 107–115 (2021).
Google Scholar
Borysov, S. S., Geilhufe, R. M. & Balatsky, A. V. Organic materials database: an open-access online database for data mining. PLoS ONE 12, e0171501 (2017).
Google Scholar
Landis, D. D. et al. The Computational Materials Repository. Comput. Sci. Eng. 14, 51–57 (2012).
Google Scholar
Schmidt, J. et al. Machine-learning-assisted determination of the global zero-temperature phase diagram of materials. Adv. Mater. 35, 2210788 (2023).
Google Scholar
Hautier, G., Fischer, C., Ehrlacher, V., Jain, A. & Ceder, G. Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem. 50, 656–663 (2011).
Google Scholar
Eckert, H. et al. The AFLOW library of crystallographic prototypes: part 4. Comput. Mater. Sci. 240, 112988 (2024).
Google Scholar
Ye, W., Lei, X., Aykol, M. & Montoya, J. H. Novel inorganic crystal structures predicted using autonomous simulation agents. Sci. Data 9, 302 (2022).
Google Scholar
Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).
Google Scholar
Woods-Robinson, R., Horton, M. K. & Persson, K. A. A method to computationally screen for tunable properties of crystalline alloys. Patterns 4, 100723 (2023).
Google Scholar
Barroso-Luque, L. et al. smol: a Python package for cluster expansions and beyond. J. Open Source Softw. 7, 4504 (2022).
Google Scholar
Scheffler, M. et al. FAIR data enabling new horizons for materials research. Nature 604, 635–642 (2022).
Google Scholar
Chen, C. & Ong, S. P. A universal graph deep learning interatomic potential for the periodic table. Nat. Comput. Sci. 2, 718–728 (2022).
Google Scholar
Deng, B. et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 5, 1031–1041 (2023).
Google Scholar
Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source Python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).
Google Scholar
Huck, P. et al. User applications driven by the community contribution framework MPContribs in the Materials Project. Concurr. Comput. 28, 1982–1993 (2016).
Google Scholar
Ganose, A. et al. Atomate2: modular workflows for materials science. Preprint at https://doi.org/10.26434/chemrxiv-2025-tcr5h (2025).
Ganose, A. et al. Atomate2 code repository. GitHub https://github.com/materialsproject/atomate2 (2025).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Google Scholar
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Google Scholar
Zimmermann, N. E. R. & Jain, A. Local structure order parameters and site fingerprints for quantification of coordination environment and crystal structure similarity. RSC Adv. 10, 6063–6081 (2020).
Google Scholar
Waroquiers, D. et al. ChemEnv: a fast and robust coordination environment identification tool. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 76, 683–695 (2020).
Google Scholar
Ganose, A. M. & Jain, A. Robocrystallographer: automated crystal structure text descriptions and analysis. MRS Commun. 9, 874–881 (2019).
Google Scholar
McDermott, M. J., Dwaraknath, S. S. & Persson, K. A. A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis. Nat. Commun. 12, 3097 (2021).
Google Scholar
McDermott, M. J. et al. Assessing thermodynamic selectivity of solid-state reactions for the predictive synthesis of inorganic materials. ACS Cent. Sci. 9, 1957–1975 (2023).
Google Scholar
Shen, J.-X., Horton, M. & Persson, K. A. A charge-density-based general cation insertion algorithm for generating new Li-ion cathode materials. npj Comput. Mater. 6, 161 (2020).
Google Scholar
Li, H. H., Shen, J.-X. & Persson, K. A. A rapid lithium-ion cathode discovery pipeline and its exemplary application. Energy Adv. https://doi.org/10.1039/D3YA00397C (2024).
Shen, J.-X., Li, H. H., Rutt, A., Horton, M. K. & Persson, K. A. Topological graph-based analysis of solid-state ion migration. npj Comput. Mater. 9, 99 (2023).
Google Scholar
Rutt, A. et al. Expanding the material search space for multivalent cathodes. ACS Appl. Mater. Interfaces 14, 44367–44376 (2022).
Google Scholar
Huck, P., Jain, A., Gunter, D., Winston, D. & Persson, K. A community contribution framework for sharing materials data with materials project. In 2015 IEEE 11th International Conference on e-Science 535–541 (IEEE, 2015); https://doi.org/10.1109/eScience.2015.75
Bauer, S. et al. Roadmap on data-centric materials science. Model. Simul. Mater. Sci. Eng. 32, 063301 (2024).
Google Scholar
Aykol, M. et al. High-throughput computational design of cathode coatings for Li-ion batteries. Nat. Commun. 7, 13779 (2016).
Google Scholar
Luo, S., Li, T., Wang, X., Faizan, M. & Zhang, L. High-throughput computational materials screening and discovery of optoelectronic semiconductors. WIREs Comput. Mol. Sci. 11, e1489 (2021).
Google Scholar
Luo, X. & Xie, R.-J. Recent progress on discovery of novel phosphors for solid state lighting. J. Rare Earths 38, 464–473 (2020).
Google Scholar
Gorai, P., Stevanović, V. & Toberer, E. S. Computationally guided discovery of thermoelectric materials. Nat. Rev. Mater. 2, 17053 (2017).
Google Scholar
Talley, K. R., Sherbondy, R., Zakutayev, A. & Brennecka, G. L. Review of high-throughput approaches to search for piezoelectric nitrides. J. Vac. Sci. Technol. A 37, 060803 (2019).
Google Scholar
Singh, A. K., Gorelik, R. & Biswas, T. Data-driven discovery of robust materials for photocatalytic energy conversion. Annu. Rev. Condens. Matter Phys. 14, 237–259 (2023).
Google Scholar
Pan, J. & Yan, Q. Data-driven material discovery for photocatalysis: a short review. J. Semicond. 39, 071001 (2018).
Google Scholar
Zhao, S., Kan, E. & Li, Z. Electride: from computational characterization to theoretical design. WIREs Comput. Mol. Sci. 6, 430–440 (2016).
Google Scholar
Ren, E., Guilbaud, P. & Coudert, F.-X. High-throughput computational screening of nanoporous materials in targeted applications. Digit. Discov. 1, 355–374 (2022).
Google Scholar
Garcia, C. A. C., Bocarsly, J. D. & Seshadri, R. Computational screening of magnetocaloric alloys. Phys. Rev. Mater. 4, 024402 (2020).
Google Scholar
Shen, L., Zhou, J., Yang, T., Yang, M. & Feng, Y. P. High-throughput computational discovery and intelligent design of two-dimensional functional materials for various applications. Acc. Mater. Res. 3, 572–583 (2022).
Google Scholar
Su, Y. et al. High-throughput first-principle prediction of collinear magnetic topological materials. npj Comput. Mater. 8, 261 (2022).
Google Scholar
Frey, N. C. et al. High-throughput search for magnetic and topological order in transition metal oxides. Sci. Adv. 6, eabd1076 (2020).
Google Scholar
Gao, J. et al. High-throughput screening for Weyl semimetals with S4 symmetry. Sci. Bull. 66, 667–675 (2021).
Google Scholar
Ren, Z. et al. An invertible crystallographic representation for general inverse design of inorganic crystals with targeted properties. Matter 5, 314–335 (2022).
Google Scholar
Hautier, G., Miglio, A., Ceder, G., Rignanese, G.-M. & Gonze, X. Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nat. Commun. 4, 2292 (2013).
Google Scholar
Ricci, F. et al. An ab initio electronic transport database for inorganic materials. Sci. Data 4, 170085 (2017).
Google Scholar
Bhatia, A. et al. High-mobility bismuth-based transparent p-type oxide from high-throughput material screening. Chem. Mater. 28, 30–34 (2016).
Google Scholar
Wang, Z. et al. Mining unexplored chemistries for phosphors for high-color-quality white-light-emitting diodes. Joule 2, 914–926 (2018).
Google Scholar
Li, S. et al. Data-driven discovery of full-visible-spectrum phosphor. Chem. Mater. 31, 6286–6294 (2019).
Google Scholar
Dunstan, M. T. et al. Large scale computational screening and experimental discovery of novel materials for high temperature CO2 capture. Energy Environ. Sci. 9, 1346–1360 (2016).
Google Scholar
Zhu, H. et al. Computational and experimental investigation of TmAgTe2 and XYZ2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening. J. Mater. Chem. C 3, 10554–10565 (2015).
Google Scholar
Aydemir, U. et al. YCuTe2: a member of a new class of thermoelectric materials with CuTe4-based layered structure. J. Mater. Chem. A 4, 2461–2472 (2016).
Google Scholar
Horton, M. K., Montoya, J. H., Liu, M. & Persson, K. A. High-throughput prediction of the ground-state collinear magnetic order of inorganic materials using density functional theory. npj Comput. Mater. 5, 64 (2019).
Google Scholar
Cooley, J. A. et al. From waste-heat recovery to refrigeration: compositional tuning of magnetocaloric Mn1+xSb. Chem. Mater. 32, 1243–1249 (2020).
Google Scholar
Burton, L. A., Ricci, F., Chen, W., Rignanese, G.-M. & Hautier, G. High-throughput identification of electrides from all known inorganic materials. Chem. Mater. 30, 7521–7526 (2018).
Google Scholar
Chanhom, P. et al. Sr3CrN3: a new electride with a partially filled d-shell transition metal. J. Am. Chem. Soc. 141, 10595–10598 (2019).
Google Scholar
Tanaka, Y. et al. New oxyhalide solid electrolytes with high lithium ionic conductivity >10 mS cm−1 for all-solid-state batteries. Angew. Chem. Int. Ed. 62, e202217581 (2023).
Google Scholar
Zhuo, Y., Mansouri Tehrani, A., Oliynyk, A. O., Duke, A. C. & Brgoch, J. Identifying an efficient, thermally robust inorganic phosphor host via machine learning. Nat. Commun. 9, 4377 (2018).
Google Scholar
Petretto, G. et al. High-throughput density-functional perturbation theory phonons for inorganic materials. Sci. Data 5, 180065 (2018).
Google Scholar
Aykol, M., Montoya, J. H. & Hummelshøj, J. Rational solid-state synthesis routes for inorganic materials. J. Am. Chem. Soc. 143, 9244–9259 (2021).
Google Scholar
Sivonxay, E. & Persson, K. A. Density functional theory assessment of the lithiation thermodynamics and phase evolution in Si-based amorphous binary alloys. Energy Storage Mater. 53, 42–50 (2022).
Google Scholar
Aykol, M., Dwaraknath, S. S., Sun, W. & Persson, K. A. Thermodynamic limit for synthesis of metastable inorganic materials. Sci. Adv. 4, eaaq0148 (2018).
Google Scholar
Zheng, H. et al. The ab initio non-crystalline structure database: empowering machine learning to decode diffusivity. npj Comput. Mater. https://doi.org/10.1038/s41524-024-01469-2 (2024)
Bartel, C. J. Review of computational approaches to predict the thermodynamic stability of inorganic solids. J. Mater. Sci. 57, 10475–10498 (2022).
Google Scholar
Raccuglia, P. et al. Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73–76 (2016).
Google Scholar
Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023).
Google Scholar
Hautier, G., Jain, A. & Ong, S. P. From the computer to the laboratory: materials discovery and design using first-principles calculations. J. Mater. Sci. 47, 7317–7340 (2012).
Google Scholar
Jain, A., Shin, Y. & Persson, K. A. Computational predictions of energy materials using density functional theory. Nat. Rev. Mater. 1, 15004 (2016).
Google Scholar
Ko, T. W. & Ong, S. P. Recent advances and outstanding challenges for machine learning interatomic potentials. Nat. Comput. Sci. 3, 998–1000 (2023).
Google Scholar
Fung, V., Ganesh, P. & Sumpter, B. G. Physically informed machine learning prediction of electronic density of states. Chem. Mater. 34, 4848–4855 (2022).
Google Scholar
Torrisi, S. B. et al. Random forest machine learning models for interpretable X-ray absorption near-edge structure spectrum–property relationships. npj Comput. Mater. 6, 109 (2020).
Google Scholar
Kong, S. et al. Density of states prediction for materials discovery via contrastive learning from probabilistic embeddings. Nat. Commun. 13, 949 (2022).
Google Scholar
Shen, J.-X. et al. A representation-independent electronic charge density database for crystalline materials. Sci. Data 9, 661 (2022).
Google Scholar
Dunn, A., Wang, Q., Ganose, A., Dopp, D. & Jain, A. Benchmarking materials property prediction methods: the Matbench test set and Automatminer reference algorithm. npj Comput. Mater. 6, 138 (2020).
Google Scholar
Wang, A. Y.-T., Kauwe, S. K., Murdock, R. J. & Sparks, T. D. Compositionally restricted attention-based network for materials property predictions. npj Comput. Mater. 7, 77 (2021).
Google Scholar
Cheng, G., Gong, X.-G. & Yin, W.-J. Crystal structure prediction by combining graph network and optimization algorithm. Nat. Commun. 13, 1492 (2022).
Google Scholar
Tadmor, E. B., Elliott, R. S., Sethna, J. P., Miller, R. E. & Becker, C. A. The potential of atomistic simulations and the knowledgebase of interatomic models. JOM 63, 17 (2011).
Google Scholar
Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).
Google Scholar
Szymanski, N. J. et al. Toward autonomous design and synthesis of novel inorganic materials. Mater. Horiz. 8, 2169–2198 (2021).
Google Scholar
Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
Google Scholar
Jain, A. et al. Formation enthalpies by mixing GGA and GGA + U calculations. Phys. Rev. B 84, 045115 (2011).
Google Scholar
de Jong, M., Chen, W., Geerlings, H., Asta, M. & Persson, K. A. A database to enable discovery and design of piezoelectric materials. Sci. Data 2, 150053 (2015).
Google Scholar
de Jong, M. et al. Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data 2, 150009 (2015).
Google Scholar
Tran, R. et al. Surface energies of elemental crystals. Sci. Data 3, 160080 (2016).
Google Scholar
Petousis, I. et al. High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials. Sci. Data 4, 160134 (2017).
Google Scholar
Mathew, K. et al. High-throughput computational X-ray absorption spectroscopy. Sci. Data 5, 180151 (2018).
Google Scholar
Latimer, K., Dwaraknath, S., Mathew, K., Winston, D. & Persson, K. A. Evaluation of thermodynamic equations of state across chemistry and structure in the Materials Project. npj Comput. Mater. 4, 40 (2018).
Google Scholar
Patel, A. M., Nørskov, J. K., Persson, K. A. & Montoya, J. H. Efficient Pourbaix diagrams of many-element compounds. Phys. Chem. Chem. Phys. 21, 25323–25327 (2019).
Google Scholar
Zheng, H. et al. Grain boundary properties of elemental metals. Acta Mater. 186, 40–49 (2020).
Google Scholar
Bosoni, E. et al. How to verify the precision of density-functional-theory implementations via reproducible and universal workflows. Nat. Rev. Phys. 6, 45–58 (2024).
Google Scholar