• July 16, 2025
  • Live Match Score
  • 0


  • Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    CAS 

    Google Scholar 

  • Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, C. et al. All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy Environ. Sci. 14, 2577–2619 (2021).

    CAS 

    Google Scholar 

  • Richards, W. D., Miara, L. J., Wang, Y., Kim, J. C. & Ceder, G. Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016).

    CAS 

    Google Scholar 

  • Zhu, Y., He, X. & Mo, Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Park, K. H. et al. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries. Adv. Energy Mater. 8, 1800035 (2018).

    Google Scholar 

  • Wang, C., Liang, J., Kim, J. T. & Sun, X. Prospects of halide-based all-solid-state batteries: from material design to practical application. Sci. Adv. 8, eadc9516 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tanaka, Y. et al. New oxyhalide solid electrolytes with high lithium ionic conductivity >10 mS cm−1 for all-solid-state batteries. Angew. Chem. Int. Ed. 62, e202217581 (2023).

    CAS 

    Google Scholar 

  • Riegger, L. M., Schlem, R., Sann, J., Zeier, W. G. & Janek, J. Lithium‐metal anode instability of the superionic halide solid electrolytes and the implications for solid‐state batteries. Angew. Chem. 133, 6792–6797 (2021).

    Google Scholar 

  • Rosenbach, C. et al. Visualizing the chemical incompatibility of halide and sulfide-based electrolytes in solid-state batteries. Adv. Energy Mater. 13, 2203673 (2023).

    CAS 

    Google Scholar 

  • Koç, T. et al. Toward optimization of the chemical/electrochemical compatibility of halide solid electrolytes in all-solid-state batteries. ACS Energy Lett. 7, 2979–2987 (2022).

    Google Scholar 

  • Auvergniot, J. et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem. Mater. 29, 3883–3890 (2017).

    CAS 

    Google Scholar 

  • Han, F., Zhu, Y., He, X., Mo, Y. & Wang, C. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 6, 1501590 (2016).

    Google Scholar 

  • Schwietert, T. K., Vasileiadis, A. & Wagemaker, M. First-principles prediction of the electrochemical stability and reaction mechanisms of solid-state electrolytes. JACS Au 1, 1488–1496 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schwietert, T. K. et al. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater. 19, 428–435 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Tan, D. H. S. et al. Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte. ACS Energy Lett. 4, 2418–2427 (2019).

    CAS 

    Google Scholar 

  • Arbi, K., Kuhn, A., Sanz, J. & García-Alvarado, F. Characterization of lithium insertion into NASICON-type Li1+xTi2–xAlx(PO4)3 and its electrochemical behavior. J. Electrochem. Soc. 157, A654 (2010).

    CAS 

    Google Scholar 

  • Wang, Q. et al. Designing lithium halide solid electrolytes. Nat. Commun. 15, 1050 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, X. et al. Structural regulation of halide superionic conductors for all-solid-state lithium batteries. Nat. Commun. 15, 53 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ohno, S., Rosenbach, C., Dewald, G. F., Janek, J. & Zeier, W. G. Linking solid electrolyte degradation to charge carrier transport in the thiophosphate-based composite cathode toward solid-state lithium-sulfur batteries. Adv. Funct. Mater. 31, 2010620 (2021).

    CAS 

    Google Scholar 

  • Ohno, S. et al. Observation of chemomechanical failure and the influence of cutoff potentials in all-solid-state Li–S batteries. Chem. Mater. 31, 2930–2940 (2019).

    CAS 

    Google Scholar 

  • Liu, Z. et al. High ionic conductivity achieved in Li3Y(Br3Cl3) mixed halide solid electrolyte via promoted diffusion pathways and enhanced grain boundary. ACS Energy Lett. 6, 298–304 (2021).

    CAS 

    Google Scholar 

  • Asano, T. et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 30, 1803075 (2018).

    Google Scholar 

  • Sun, S. et al. Eliminating interfacial O-involving degradation in Li-rich Mn-based cathodes for all-solid-state lithium batteries. Sci. Adv. 8, eadd5189 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, Y., Zhao, C.-Z., Huang, J.-Q. & Zhang, Q. The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 6, 1172–1198 (2022).

    CAS 

    Google Scholar 

  • Lu, P. et al. Wide-temperature, long-cycling, and high-loading pyrite all-solid-state batteries enabled by argyrodite thioarsenate superionic conductor. Adv. Funct. Mater. 33, 2211211 (2023).

    CAS 

    Google Scholar 

  • Samanta, S. et al. Ionocovalency of the central metal halide bond-dependent chemical compatibility of halide solid electrolytes with Li6PS5Cl. ACS Energy Lett. 9, 3683–3693 (2024).

    CAS 

    Google Scholar 

  • Jin, H., Huang, Y., Wang, C. & Ji, H. Phosphorus-based anodes for fast charging lithium-ion batteries: challenges and opportunities. Small Sci. 2, 2200015 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, Y. et al. Design of red phosphorus nanostructured electrode for fast-charging lithium-ion batteries with high energy density. Joule 3, 1080–1093 (2019).

    CAS 

    Google Scholar 

  • Cheng, Z., Wu, Y. & Huang, H. Red phosphorus/graphite composite as a high performance anode for lithium-ion batteries. Solid State Ion. 389, 116098 (2023).

    CAS 

    Google Scholar 

  • Nagao, M., Hayashi, A. & Tatsumisago, M. All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode. J. Power Sources 196, 6902–6905 (2011).

    CAS 

    Google Scholar 

  • Yang, J. et al. Building a C-P bond to unlock the reversible and fast lithium storage performance of black phosphorus in all-solid-state lithium-ion batteries. Mater. Today Energy 20, 100662 (2021).

    CAS 

    Google Scholar 

  • Han, X., Gong, H., Li, H. & Sun, J. Fast-charging phosphorus-based anodes: promises, challenges, and pathways for improvement. Chem. Rev. 124, 6903–6951 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Li, J. et al. Mixed ion-electron conducting Li3P for efficient cathode prelithiation of all-solid-state Li-ion batteries. SmartMat 4, e1200 (2023).

    CAS 

    Google Scholar 

  • Liu, M. et al. Improving Li-ion interfacial transport in hybrid solid electrolytes. Nat. Nanotechnol. 17, 959–967 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Cheng, Z. et al. Revealing the impact of space-charge layers on the Li-ion transport in all-solid-state batteries. Joule 4, 1311–1323 (2020).

    CAS 

    Google Scholar 

  • Wagemaker, M., Kentgens, A. P. M. & Mulder, F. M. Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature 418, 397–399 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Ganapathy, S., Yu, C., van Eck, E. R. H. & Wagemaker, M. Peeking across grain boundaries in a solid-state ionic conductor. ACS Energy Lett. 4, 1092–1097 (2019).

    CAS 

    Google Scholar 

  • Ganesan, P. et al. Fluorine-substituted halide solid electrolytes with enhanced stability toward the lithium metal. ACS Appl. Mater. Interfaces 15, 38391–38402 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, K. et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries. Nat. Commun. 12, 4410 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Der Maas, E. et al. Investigation of structure, ionic conductivity, and electrochemical stability of halogen substitution in solid-state ion conductor Li3YBrxCl6–x. J. Phys. Chem. C 127, 125–132 (2023).

    Google Scholar 

  • Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).

    CAS 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS 

    Google Scholar 

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Cheng, Z. Source data for ‘Beneficial redox activity of halide solid electrolytes empowering high-performance anodes in all-solid-state batteries’. Zenodo https://doi.org/10.5281/zenodo.15534634 (2025).


  • Leave a Reply

    Your email address will not be published. Required fields are marked *