• July 18, 2025
  • Live Match Score
  • 0


  • Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yabuuchi, N. et al. P2-type Nax[Fe1/2Mn1/2]O2 made from Earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Saha, S. et al. Exploring the bottlenecks of anionic redox in Li-rich layered sulfides. Nat. Energy 4, 977–987 (2019).

    CAS 

    Google Scholar 

  • Wang, X. et al. Achieving a high-performance sodium-ion pouch cell by regulating intergrowth structures in a layered oxide cathode with anionic redox. Nat. Energy 9, 184–196 (2024).

    CAS 

    Google Scholar 

  • Xu, K., von Cresce, A. & Lee, U. Differentiating contributions to ‘ion transfer’ barrier from interphasial resistance and Li⁺ desolvation at electrolyte/graphite interface. Langmuir 26, 11538–11543 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Besenhard, J. O. & Fritz, H. P. The electrochemistry of black carbons. Angew. Chem. Int. Ed. 22, 950–975 (1983).

    Google Scholar 

  • Wagner, M. R., Albering, J. H., Moeller, K.-C., Besenhard, J. O. & Winter, M. XRD evidence for the electrochemical formation of Li⁺(PC)yCn in PC-based electrolytes. Electrochem. Commun. 7, 947–952 (2005).

    CAS 

    Google Scholar 

  • Houdeville, R. G., Black, A. P., Ponrouch, A., Palacín, M. R. & Fauth, F. Operando synchrotron X-ray diffraction studies on TiS2: the effect of propylene carbonate on reduction mechanism. J. Electrochem. Soc. 168, 030514 (2021).

    CAS 

    Google Scholar 

  • Chung, G.-C. et al. Origin of graphite exfoliation: an investigation of the important role of solvent cointercalation. J. Electrochem. Soc. 147, 4391–4398 (2000).

    CAS 

    Google Scholar 

  • Park, J., Xu, Z.-L. & Kang, K. Solvated ion intercalation in graphite: sodium and beyond. Front. Chem. 8, 432 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, H., Elmanzalawy, M., Sivakumar, P. & Fleischmann, S. Unifying electrolyte formulation and electrode nanoconfinement design to enable new ion–solvent cointercalation chemistries. Energy Environ. Sci. 17, 2100–2116 (2024).

    CAS 

    Google Scholar 

  • Jache, B. & Adelhelm, P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem. Int. Ed. 53, 10169–10173 (2014).

    CAS 

    Google Scholar 

  • Kim, H. et al. Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv. Funct. Mater. 25, 534–541 (2015).

    CAS 

    Google Scholar 

  • Goktas, M. et al. Graphite as cointercalation electrode for sodium-ion batteries: electrode dynamics and the missing solid electrolyte interphase (SEI). Adv. Energy Mater. 8, 1702724 (2018).

    Google Scholar 

  • Ferrero, G. A. et al. Solvent co-intercalation reactions for batteries and beyond. Chem. Rev. 125, 3401–3439 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jache, B., Binder, J. O., Abe, T. & Adelhelm, P. A comparative study on the impact of different glymes and their derivatives as electrolyte solvents for graphite co-intercalation electrodes in lithium-ion and sodium-ion batteries. Phys. Chem. Chem. Phys. 18, 14299–14316 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Abe, T., Fukuda, H., Iriyama, Y. & Ogumi, Z. Solvated Li-ion transfer at interface between graphite and electrolyte. J. Electrochem. Soc. 151, A1120 (2004).

    CAS 

    Google Scholar 

  • Alvarez et al. Co-intercalation batteries (CoIBs): role of TiS2 as electrode for storing solvated Na ions. Adv. Energy Mater. 12, 2202377 (2022).

    Google Scholar 

  • Jung, S. C., Kang, Y.-J. & Han, Y.-K. Origin of excellent rate and cycle performance of Na⁺-solvent cointercalated graphite vs. poor performance of Li⁺-solvent case. Nano Energy 34, 456–462 (2017).

    CAS 

    Google Scholar 

  • Leifer, N., Greenstein, M. F., Mor, A., Aurbach, D. & Goobes, G. NMR-detected dynamics of sodium co-intercalation with diglyme solvent molecules in graphite anodes linked to prolonged cycling. J. Phys. Chem. C 122, 21172–21184 (2018).

    CAS 

    Google Scholar 

  • McKinnon, W. R. & Dahn, J. R. How to reduce the cointercalation of propylene carbonate in LixZrS2 and other layered compounds. J. Electrochem. Soc. 132, 364–366 (1985).

    CAS 

    Google Scholar 

  • Park, J., Kim, S. J., Lim, K., Cho, J. & Kang, K. Reconfiguring sodium intercalation process of TiS2 electrode for sodium-ion batteries by a partial solvent cointercalation. ACS Energy Lett. 7, 3718–3726 (2022).

    CAS 

    Google Scholar 

  • Tchitchekova, D. S. et al. Electrochemical intercalation of calcium and magnesium in TiS2: fundamental studies related to multivalent battery applications. Chem. Mater. 30, 847–856 (2018).

    CAS 

    Google Scholar 

  • Åvall, G. et al. In situ pore formation in graphite through solvent co-intercalation: a new model for the formation of ternary graphite intercalation compounds bridging batteries and supercapacitors. Adv. Energy Mater. 13, 2301944 (2023).

    Google Scholar 

  • Escher, I., Hahn, M., Ferrero, G. A. & Adelhelm, P. A practical guide for using electrochemical dilatometry as operando tool in battery and supercapacitor research. Energy Technol. 10, 2101120 (2022).

    Google Scholar 

  • Palaniselvam, T. et al. Sodium storage and electrode dynamics of tin–carbon composite electrodes from bulk precursors for sodium-ion batteries. Adv. Funct. Mater. 29, 1900790 (2019).

    Google Scholar 

  • Nayak, P. K. et al. Investigation of Li1.17Ni0.20Mn0.53Co0.10O2 as an interesting Li- and Mn-rich layered oxide cathode material through electrochemistry, microscopy, and in situ electrochemical dilatometry. ChemElectroChem 6, 2812–2819 (2019).

    CAS 

    Google Scholar 

  • Spingler, F. B., Kücher, S., Phillips, R., Moyassari, E. & Jossen, A. Electrochemically stable in situ dilatometry of NMC, NCA and graphite electrodes for lithium-ion cells compared to XRD measurements. J. Electrochem. Soc. 168, 040515 (2021).

    CAS 

    Google Scholar 

  • Escher, I., Freytag, A. I., Lopez del Amo, J. M. & Adelhelm, P. Solid-state NMR study on the structure and dynamics of graphite electrodes in sodium-ion batteries with solvent co-intercalation. Batter. Supercaps 6, e202200421 (2023).

    CAS 

    Google Scholar 

  • Pell, A. J., Pintacuda, G. & Grey, C. P. Paramagnetic NMR in solution and the solid state. Prog. Nucl. Magn. Reson. Spectrosc. 111, 1–271 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Gotoh, K. et al. Structure and dynamic behavior of sodium–diglyme complex in the graphite anode of sodium ion battery by 2H nuclear magnetic resonance. J. Phys. Chem. C 120, 28152–28156 (2016).

    CAS 

    Google Scholar 

  • Yoon, G., Kim, H., Park, I. & Kang, K. Conditions for reversible Na intercalation in graphite: theoretical studies on the interplay among guest ions, solvent, and graphite host. Adv. Energy Mater. 7, 1601519 (2017).

    Google Scholar 

  • Xu, K. Electrolytes, Interfaces and Interphases: Fundamentals and Applications in Batteries (Royal Society of Chemistry, 2023).

  • Chung, G.-C., Kim, H.-J., Jun, S.-H. & Kim, M.-H. New cyclic carbonate solvent for lithium ion batteries: trans-2,3-butylene carbonate. Electrochem. Commun. 1, 493–496 (1999).

    CAS 

    Google Scholar 

  • Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, T. et al. Anionic redox reaction in layered NaCr2/3Ti1/3S2 through electron holes formation and dimerization of S–S. Nat. Commun. 10, 4458 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, T. et al. Anomalous redox features induced by strong covalency in layered NaTi1−yVyS2 cathodes for Na-ion batteries. Angew. Chem. Int. Ed. 61, e202205444 (2022).

    CAS 

    Google Scholar 

  • Bianchini, M. et al. The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides. Nat. Mater. 19, 1088–1095 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Vassilaras, P., Ma, X., Li, X. & Ceder, G. Electrochemical properties of monoclinic NaNiO2. J. Electrochem. Soc. 160, A207–A211 (2013).

    CAS 

    Google Scholar 

  • Dippel, A.-C. et al. Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction. J. Synchrotron Radiat. 22, 675–687 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kieffer, J., Valls, V., Blanc, N. & Hennig, C. New tools for calibrating diffraction setups. J. Synchrotron Radiat. 27, 558–566 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all-purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).

    CAS 

    Google Scholar 

  • Frisch, M. J., et al. Gaussian 16 Revision C.01 (2016).

  • Becke, A. D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 98, 1372–1377 (1993).

    CAS 

    Google Scholar 

  • Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).

    CAS 

    Google Scholar 

  • Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    CAS 

    Google Scholar 

  • Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS 

    Google Scholar 

  • Kresse, G., Furthmüller, J. & Hafner, J. Theory of the crystal structures of selenium and tellurium: the effect of generalized-gradient corrections to the local-density approximation. Phys. Rev. B 50, 13181–13185 (1994).

    CAS 

    Google Scholar 

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS 

    Google Scholar 

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS 

    Google Scholar 

  • Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. Recent developments in the Inorganic Crystal Structure Database: theoretical crystal structure data and related features. J. Appl. Crystallogr. 52, 918–925 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holleman, A. F., Wiberg, E. & Wiberg, N. in Lehrbuch der anorganischen Chemie 2035–2038 (1985).

  • Sun, Y., Åvall, G. & Adelhelm, P. Solvent co-intercalation in layered cathode active materials for sodium-ion batteries. figshare https://doi.org/10.6084/m9.figshare.29143679 (2025).


  • Leave a Reply

    Your email address will not be published. Required fields are marked *