• July 18, 2025
  • Live Match Score
  • 0


  • Cheng, P., Li, G., Zhan, X. & Yang, Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photon. 12, 131–142 (2018).

  • Liu, Y. et al. Recent progress in organic solar cells (part I material science). Sci. China Chem. 65, 224–268 (2022).

    CAS 

    Google Scholar 

  • Hou, J., Inganäs, O., Friend, R. H. & Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17, 119–128 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Guan, S. et al. Self-assembled interlayer enables high-performance organic photovoltaics with power conversion efficiency exceeding 20%. Adv. Mater. 36, 2400342 (2024).

    CAS 

    Google Scholar 

  • Jiang, Y. et al. Non-fullerene acceptor with asymmetric structure and phenyl-substituted alkyl side chain for 20.2% efficiency organic solar cells. Nat. Energy 9, 975–986 (2024).

    CAS 

    Google Scholar 

  • Li, C. et al. Highly efficient organic solar cells enabled by suppressing triplet exciton formation and non-radiative recombination. Nat. Commun. 15, 8872 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, R. et al. Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 618, 80–86 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Li, Y. et al. Flexible silicon solar cells with high power-to-weight ratios. Nature 626, 105–110 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Benduhn, J. et al. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat. Energy 2, 17053 (2017).

    CAS 

    Google Scholar 

  • Green, M. A. Solar cell fill factors: general graph and empirical expressions. Solid-State Electron. 24, 788–789 (1981).

    CAS 

    Google Scholar 

  • Jiang, K. et al. Suppressed recombination loss in organic photovoltaics adopting a planar–mixed heterojunction architecture. Nat. Energy 7, 1076–1086 (2022).

    Google Scholar 

  • Zhang, X. et al. High fill factor organic solar cells with increased dielectric constant and molecular packing density. Joule 6, 444–457 (2022).

    CAS 

    Google Scholar 

  • Zhu, L. et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 21, 656–663 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Zeng, R. et al. All-polymer organic solar cells with nano-to-micron hierarchical morphology and large light receiving angle. Nat. Commun. 14, 4148 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, C. et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 6, 605–613 (2021).

    CAS 

    Google Scholar 

  • Yuan, J. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140–1151 (2019).

    CAS 

    Google Scholar 

  • Bai, Q. et al. Recent progress in low-cost noncovalently fused-ring electron acceptors for organic solar cells. Aggregate 3, e281 (2022).

    CAS 

    Google Scholar 

  • Tada, A., Geng, Y., Wei, Q., Hashimoto, K. & Tajima, K. Tailoring organic heterojunction interfaces in bilayer polymer photovoltaic devices. Nat. Mater. 10, 450–455 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Li, C. et al. Achieving record-efficiency organic solar cells upon tuning the conformation of solid additives. J. Am. Chem. Soc. 144, 14731–14739 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, C. K. et al. ‘Supersaturated’ self-assembled charge-selective interfacial layers for organic solar cells. J. Am. Chem. Soc. 136, 17762–17773 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Wu, Z. et al. n-Type water/alcohol-soluble naphthalene diimide-based conjugated polymers for high-performance polymer solar cells. J. Am. Chem. Soc. 138, 2004–2013 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Qin, F. et al. Robust metal ion-chelated polymer interfacial layer for ultraflexible non-fullerene organic solar cells. Nat. Commun. 11, 4508 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ouyang, X., Peng, R., Ai, L., Zhang, X. & Ge, Z. Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte. Nat. Photon. 9, 520–524 (2015).

    CAS 

    Google Scholar 

  • Yao, J. et al. Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nat. Commun. 11, 2726 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, Z. et al. Hot-substrate deposition of hole- and electron-transport layers for enhanced performance in perovskite solar cells. Adv. Energy Mater. 8, 1701659 (2018).

    Google Scholar 

  • Zhang, G. et al. NiOx nanoparticles hole-transporting layer regulated by ionic radius-controlled doping and reductive agent for organic solar cells with efficiency of 19.18%. Adv. Mater. 36, 2310630 (2024).

    CAS 

    Google Scholar 

  • Leijtens, T., Lim, J., Teuscher, J., Park, T. & Snaith, H. J. Charge density dependent mobility of organic hole-transporters and mesoporous TiO2 determined by transient mobility spectroscopy: implications to dye-sensitized and organic solar cells. Adv. Mater. 25, 3227–3233 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • He, Z. et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photon. 6, 591–595 (2012).

    Google Scholar 

  • Zhao, C. et al. An organic–inorganic hybrid electrolyte as a cathode interlayer for efficient organic solar cells. Angew. Chem. Int. Ed. 60, 8526–8531 (2021).

    CAS 

    Google Scholar 

  • Zhang, Y. et al. Organic–inorganic hybrid cathode interlayer materials for efficient organic solar cells. Sustain. Energy Fuels 6, 4115–4129 (2022).

    CAS 

    Google Scholar 

  • Li, S. et al. Achieving over 18% efficiency organic solar cell enabled by a ZnO-based hybrid electron transport layer with an operational lifetime up to 5 years. Angew. Chem. Int. Ed. 61, e202207397 (2022).

    CAS 

    Google Scholar 

  • Baek, S.-W. et al. Enhancing the internal quantum efficiency and stability of organic solar cells via metallic nanofunnels. Adv. Energy Mater. 5, 1501393 (2015).

    Google Scholar 

  • Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).

    CAS 

    Google Scholar 

  • Chen, Z. et al. Simplified fabrication of high-performance organic solar cells through the design of self-assembling hole-transport molecules. Joule 8, 1723–1734 (2024).

    CAS 

    Google Scholar 

  • Xin, Y. et al. Multiarmed aromatic ammonium salts boost the efficiency and stability of inverted organic solar cells. J. Am. Chem. Soc. 146, 3363–3372 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Wen, X. et al. Tetrahydroxy-perylene bisimide embedded in a zinc oxide thin film as an electron-transporting layer for high-performance non-fullerene organic solar cells. Angew. Chem. Int. Ed. 58, 13051–13055 (2019).

    CAS 

    Google Scholar 

  • Sun, Y., Seo, J. H., Takacs, C. J., Seifter, J. & Heeger, A. J. Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer. Adv. Mater. 23, 1679–1683 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Li, Y. et al. An n-n heterojunction configuration for efficient electron transport in organic photovoltaic devices. Adv. Funct. Mater. 33, 2209728 (2023).

    CAS 

    Google Scholar 

  • Xia, Y. et al. Molecular doping inhibits charge trapping in low-temperature-processed ZnO toward flexible organic solar cells. ACS Appl. Mater. Interfaces 13, 14423–14432 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, S. et al. Inverted polymer solar cells with reduced interface recombination. Adv. Energy Mater. 2, 1333–1337 (2012).

    CAS 

    Google Scholar 

  • Latham, K. G., Simone, M. I., Dose, W. M., Allen, J. A. & Donne, S. W. Synchrotron based NEXAFS study on nitrogen doped hydrothermal carbon: insights into surface functionalities and formation mechanisms. Carbon 114, 566–578 (2017).

    CAS 

    Google Scholar 

  • Zubavichus, Y., Shaporenko, A., Korolkov, V., Grunze, M. & Zharnikov, M. X-ray absorption spectroscopy of the nucleotide bases at the carbon, nitrogen, and oxygen K-edges. J. Phys. Chem. B 112, 13711–13716 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Mendoza-Sánchez, B. & Gogotsi, Y. Synthesis of two-dimensional materials for capacitive energy storage. Adv. Mater. 28, 6104–6135 (2016).

    PubMed 

    Google Scholar 

  • Daboczi, M. et al. Origin of open-circuit voltage losses in perovskite solar cells investigated by surface photovoltage measurement. ACS Appl. Mater. Interfaces 11, 46808–46817 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Meng, H. et al. Inhibition of halide oxidation and deprotonation of organic cations with dimethylammonium formate for air-processed p–i–n perovskite solar cells. Nat. Energy 9, 536–547 (2024).

    CAS 

    Google Scholar 

  • Tang, R. et al. Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency. Nat. Energy 5, 587–595 (2020).

    CAS 

    Google Scholar 

  • Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    CAS 

    Google Scholar 

  • Schön, J. H., Kloc, C., Siegrist, T., Laquindanum, J. & Katz, H. E. Charge transport in anthradithiophene single crystals. Org. Electron. 2, 165–169 (2001).

    Google Scholar 

  • Abdi-Jalebi, M. et al. Charge extraction via graded doping of hole transport layers gives highly luminescent and stable metal halide perovskite devices. Sci. Adv. 5, eaav2012 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, F. et al. Monolithically-grained perovskite solar cell with Mortise-Tenon structure for charge extraction balance. Nat. Commun. 14, 3216 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, R. et al. Charge separation from an intra-moiety intermediate state in the high-performance PM6:Y6 organic photovoltaic blend. J. Am. Chem. Soc. 142, 12751–12759 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Marcus, R. A. Chemical and electrochemical electron-transfer theory. Annu. Rev. Phys. Chem. 15, 155–196 (1964).

    CAS 

    Google Scholar 

  • Zhao, H., Chen, X., Wang, G., Qiu, Y. & Guo, L. Two-dimensional amorphous nanomaterials: synthesis and applications. 2D Mater. 6, 032002 (2019).

    CAS 

    Google Scholar 

  • Li, F. et al. Dual-phase super-strong and elastic ceramic. ACS Nano 13, 4191–4198 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Nai, J., Tian, Y., Guan, X. & Guo, L. Pearson’s principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages. J. Am. Chem. Soc. 135, 16082–16091 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Xiong, H. et al. General room-temperature Suzuki–Miyaura polymerization for organic electronics. Nat. Mater. 23, 695–702 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Song, J. et al. Solid additive engineering enables high-efficiency and eco-friendly all-polymer solar cells. Matter 5, 4047–4059 (2022).

    CAS 

    Google Scholar 

  • Song, J. et al. High-efficiency organic solar cells with low voltage loss induced by solvent additive strategy. Matter 4, 2542–2552 (2021).

    CAS 

    Google Scholar 

  • Gu, X. et al. High-efficiency and low-energy-loss organic solar cells enabled by tuning conformations of dimeric electron acceptors. CCS Chem. 5, 2576–2588 (2023).

    CAS 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *