• July 26, 2025
  • Live Match Score
  • 0


  • Berberan-Santos, M. N. & Garcia, J. M. M. Unusually strong delayed fluorescence of C70. J. Am. Chem. Soc. 118, 9391–9394 (1996).

    CAS 

    Google Scholar 

  • Endo, A. et al. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 98, 083302 (2011).

    Google Scholar 

  • Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Goushi, K., Yoshida, K., Sato, K. & Adachi, C. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nat. Photon. 6, 253–258 (2012).

    CAS 

    Google Scholar 

  • Tao, Y. et al. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics. Adv. Mater. 26, 7931–7958 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, Z. et al. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 46, 915–1016 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Gan, L., Gao, K., Cai, X., Chen, D. & Su, S.-J. Achieving efficient triplet exciton utilization with large ΔEST and nonobvious delayed fluorescence by adjusting excited state energy levels. J. Phys. Chem. Lett. 9, 4725–4731 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Hong, G. et al. A brief history of OLEDs—emitter development and industry milestones. Adv. Mater. 33, 2005630 (2021).

    CAS 

    Google Scholar 

  • de Silva, P., Kim, C. A., Zhu, T. & Voorhis, T. V. Extracting design principles for efficient thermally activated delayed fluorescence (TADF) from a simple four-state model. Chem. Mater. 31, 6995–7006 (2019).

    Google Scholar 

  • Yao, L., Yang, B. & Ma, Y. Progress in next-generation organic electroluminescent materials: material design beyond exciton statistics. Sci. China Chem. 57, 335–345 (2014).

    CAS 

    Google Scholar 

  • Szabo, A. & Ostlund, N. S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Courier Corporation, 2012).

  • Méhes, G., Nomura, H., Zhang, Q., Nakagawa, T. & Adachi, C. Enhanced electroluminescence efficiency in a spiro-acridine derivative through thermally activated delayed fluorescence. Angew. Chem. Int. Ed. 51, 11311–11315 (2012).

    Google Scholar 

  • Tanaka, H., Shizu, K., Miyazaki, H. & Adachi, C. Efficient green thermally activated delayed fluorescence (TADF) from a phenoxazine–triphenyltriazine (PXZ–TRZ) derivative. Chem. Comm. 48, 11392–11394 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Hirata, S. et al. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence. Nat. Mater. 14, 330–336 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Lin, T.-C. et al. Probe exciplex structure of highly efficient thermally activated delayed fluorescence organic light emitting diodes. Nat. Commun. 9, 3111 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong, M. Y. & Zysman-Colman, E. Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Adv. Mater. 29, 1605444 (2017).

    Google Scholar 

  • Liu, Y., Li, C., Ren, Z., Yan, S. & Bryce, M. R. All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat. Rev. Mater. 3, 18020 (2018).

    CAS 

    Google Scholar 

  • Xiao, L. et al. Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv. Mater. 23, 926–952 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Ha, J. M., Hur, S. H., Pathak, A., Jeong, J.-E. & Woo, H. Y. Recent advances in organic luminescent materials with narrowband emission. NPG Asia Mater. 13, 53 (2021).

    CAS 

    Google Scholar 

  • Xu, Y., Xu, P., Hu, D. & Ma, Y. Recent progress in hot exciton materials for organic light-emitting diodes. Chem. Soc. Rev. 50, 1030–1069 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Hatakeyama, T. et al. Ultrapure blue thermally activated delayed fluorescence molecules: efficient HOMO–LUMO separation by the multiple resonance effect. Adv. Mater. 28, 2777–2781 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Nakatsuka, S., Gotoh, H., Kinoshita, K., Yasuda, N. & Hatakeyama, T. Divergent synthesis of heteroatom-centered 4,8,12-triazatriangulenes. Angew. Chem. Int. Ed. 56, 5087–5090 (2017).

    CAS 

    Google Scholar 

  • Yang, Y. et al. Chiral multi-resonance TADF emitters exhibiting narrowband circularly polarized electroluminescence with an EQE of 37.2%. Angew. Chem. Int. Ed. 61, e202202227 (2022).

    CAS 

    Google Scholar 

  • Oda, S., Kawakami, B., Kawasumi, R., Okita, R. & Hatakeyama, T. Multiple resonance effect-induced sky-blue thermally activated delayed fluorescence with a narrow emission band. Org. Lett. 21, 9311–9314 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Han, S. H., Jeong, J. H., Yoo, J. W. & Lee, J. Y. Ideal blue thermally activated delayed fluorescence emission assisted by a thermally activated delayed fluorescence assistant dopant through a fast reverse intersystem crossing mediated cascade energy transfer process. J. Mater. Chem. C 7, 3082–3089 (2019).

    CAS 

    Google Scholar 

  • Zou, Y. et al. High-performance narrowband pure-red OLEDs with external quantum efficiencies up to 36.1% and ultralow efficiency roll-off. Adv. Mater. 34, 2201442 (2022).

    CAS 

    Google Scholar 

  • Fan, X.-C. et al. Ultrapure green organic light-emitting diodes based on highly distorted fused π-conjugated molecular design. Nat. Photon. 17, 280–285 (2023).

    CAS 

    Google Scholar 

  • Kondo, Y. et al. Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter. Nat. Photon. 13, 678–682 (2019).

    CAS 

    Google Scholar 

  • Hall, D. et al. Improving processability and efficiency of resonant TADF emitters: a design strategy. Adv. Opt. Mater. 8, 1901627 (2020).

    CAS 

    Google Scholar 

  • Pershin, A. et al. Highly emissive excitons with reduced exchange energy in thermally activated delayed fluorescent molecules. Nat. Commun. 10, 597 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hall, D. et al. Modeling of multiresonant thermally activated delayed fluorescence emitters—properly accounting for electron correlation is key! J. Chem. Theory Comput. 18, 4903–4918 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Sanz-Rodrigo, J., Olivier, Y. & Sancho-García, J.-C. Computational studies of molecular materials for unconventional energy conversion: the challenge of light emission by thermally activated delayed fluorescence. Molecules 25, 1006 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ricci, G., San-Fabián, E., Olivier, Y. & Sancho-García, J. C. Singlet-triplet excited-state inversion in heptazine and related molecules: assessment of TD-DFT and ab initio methods. ChemPhysChem 22, 553–560 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Shizu, K. & Kaji, H. Comprehensive understanding of multiple resonance thermally activated delayed fluorescence through quantum chemistry calculations. Commun. Chem. 5, 53 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pratik, S. M., Coropceanu, V. & Brédas, J.-L. Enhancement of thermally activated delayed fluorescence (TADF) in multi-resonant emitters via control of chalcogen atom embedding. Chem. Mater. 34, 8022–8030 (2022).

    CAS 

    Google Scholar 

  • Pratik, S. M., Coropceanu, V. & Brédas, J.-L. Purely organic emitters for multiresonant thermally activated delay fluorescence: design of highly efficient sulfur and selenium derivatives. ACS Mater. Lett. 4, 440–447 (2022).

    CAS 

    Google Scholar 

  • Sun, H., Zhong, C. & Brédas, J.-L. Reliable prediction with tuned range-separated functionals of the singlet–triplet gap in organic emitters for thermally activated delayed fluorescence. J. Chem. Theory Comput. 11, 3851–3858 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Frisch, M. et al. Gaussian (Gaussian, 2016).

  • Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 152, 224108 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Sun, Q. et al. PySCF: the Python-based simulations of chemistry framework. WIREs Comput. Mol. Sci. 8, e1340 2018).

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *