• August 2, 2025
  • Live Match Score
  • 0


  • Robin, P., Kavokine, N. & Bocquet, L. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science 373, 687–691 (2021).

    CAS 

    Google Scholar 

  • Robin, P. et al. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 379, 161–167 (2023).

    CAS 

    Google Scholar 

  • Zhang, Z. et al. Perovskite nickelates as electric-field sensors in salt water. Nature 553, 68–72 (2018).

    CAS 

    Google Scholar 

  • Jayachandran, D. et al. A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nat. Electron. 3, 646–655 (2020).

    Google Scholar 

  • Ahmed, D. et al. Bioinspired acousto-magnetic microswarm robots with upstream motility. Nat. Mach. Intell. 3, 116–124 (2021).

    Google Scholar 

  • Debanne, D., Inglebert, Y. & Russier, M. Plasticity of intrinsic neuronal excitability. Curr. Opin. Neurobiol. 54, 73–82 (2019).

    CAS 

    Google Scholar 

  • Chun, H. & Chung, T. D. Iontronics. Annu. Rev. Anal. Chem. 8, 441–462 (2015).

  • Bisri, S. Z., Shimizu, S., Nakano, M. & Iwasa, Y. Endeavor of iontronics: from fundamentals to applications of ion‐controlled electronics. Adv. Mater. 29, 1607054 (2017).

    Google Scholar 

  • Van Doremaele, E. R. W., Ji, X., Rivnay, J. & Van De Burgt, Y. A retrainable neuromorphic biosensor for on-chip learning and classification. Nat. Electron. 6, 792–800 (2023).

  • Van De Burgt, Y. et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017).

    Google Scholar 

  • Xie, K. et al. Organic electrochemical transistor arrays for real-time mapping of evoked neurotransmitter release in vivo. eLife 9, e50345 (2020).

    CAS 

    Google Scholar 

  • Zhang, P. et al. Nanochannel-based transport in an interfacial memristor can emulate the analog weight modulation of synapses. Nano Lett. 19, 4279–4286 (2019).

    CAS 

    Google Scholar 

  • Xiong, T. et al. Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. Science 379, 156–161 (2023).

    CAS 

    Google Scholar 

  • Ding, K. et al. Phase-change heterostructure enables ultralow noise and drift for memory operation. Science 366, 210–215 (2019).

    CAS 

    Google Scholar 

  • Shi, J., Ha, S. D., Zhou, Y., Schoofs, F. & Ramanathan, S. A correlated nickelate synaptic transistor. Nat. Commun. 4, 2676 (2013).

    Google Scholar 

  • Park, T. J. et al. Complex oxides for brain‐inspired computing: a review. Adv. Mater. 35, 2203352 (2023).

    CAS 

    Google Scholar 

  • Jeong, J. et al. Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation. Science 339, 1402–1405 (2013).

    CAS 

    Google Scholar 

  • Zhou, Y. et al. Control of emergent properties at a correlated oxide interface with graphene. Nano Lett. 15, 1627–1634 (2015).

    CAS 

    Google Scholar 

  • Wang, S. et al. An organic electrochemical transistor for multi-modal sensing, memory and processing. Nat. Electron. 6, 281–291 (2023).

    CAS 

    Google Scholar 

  • Vahl, A. et al. Concept and modelling of memsensors as two terminal devices with enhanced capabilities in neuromorphic engineering. Sci. Rep. 9, 4361 (2019).

    Google Scholar 

  • Suzuki, H. et al. Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis. Nature 454, 114–117 (2008).

    CAS 

    Google Scholar 

  • Appleby, P. A. A model of chemotaxis and associative learning in C. elegans. Biol. Cybern. 106, 373–387 (2012).

    Google Scholar 

  • Ferkey, D. M., Sengupta, P. & L’Etoile, N. D. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 217, iyab004 (2021).

    Google Scholar 

  • Dekkers, M. P. J. et al. Plasticity in gustatory and nociceptive neurons controls decision making in C. elegans salt navigation. Commun. Biol. 4, 1053 (2021).

    CAS 

    Google Scholar 

  • Chen, Y. et al. Non-catalytic hydrogenation of VO2 in acid solution. Nat. Commun. 9, 818 (2018).

    Google Scholar 

  • Queirós, L. et al. Overview of chemotaxis behavior assays in Caenorhabditis elegans. Curr. Protoc. 1, e120 (2021).

    Google Scholar 

  • Park, C. et al. Roles of the ClC chloride channel CLH-1 in food-associated salt chemotaxis behavior of C. elegans. eLife 10, e55701 (2021).

    CAS 

    Google Scholar 

  • Jiang, L., Mo, H. & Tian, P. A bacterial chemotaxis-inspired coordination strategy for coverage and aggregation of swarm robots. Appl. Sci. 11, 1347 (2021).

    CAS 

    Google Scholar 

  • Nurzaman, S. G., Matsumoto, Y., Nakamura, Y., Koizumi, S. & Ishiguro, H. ‘Yuragi’-based adaptive mobile robot search with and without gradient sensing: from bacterial chemotaxis to a Levy walk. Adv. Robot. 25, 2019–2037 (2011).

    Google Scholar 

  • Kunitomo, H. et al. Concentration memory-dependent synaptic plasticity of a taste circuit regulates salt concentration chemotaxis in Caenorhabditis elegans. Nat. Commun. 4, 2210 (2013).

    Google Scholar 

  • Qiao, R. et al. High-efficiency in situ resonant inelastic X-ray scattering (iRIXS) endstation at the Advanced Light Source. Rev. Sci. Instrum. 88, 033106 (2017).

    Google Scholar 

  • Kurmaev, E. Z. et al. Oxygen X-ray emission and absorption spectra as a probe of the electronic structure of strongly correlated oxides. Phys. Rev. B 77, 165127 (2008).

    Google Scholar 

  • Stępień, J., Sikora, M., Kapusta, C., Pomykalska, D. & Bućko, M. M. Determination of oxygen vacancy limit in Mn substituted yttria stabilized zirconia. J. Appl. Phys. 123, 185108 (2018).

    Google Scholar 

  • Hazarika, R. & Kalita, B. Effect of oxygen vacancy defects on electronic and optical properties of MgO monolayers: first principles study. Mater. Sci. Eng. B 286, 115974 (2022).

    CAS 

    Google Scholar 

  • Kurbatov, A. P. et al. Chemical oxidation of LiFePO4 in aqueous medium as a method for studying kinetics of delithiation. Russ. J. Electrochem. 54, 225–233 (2018).

    CAS 

    Google Scholar 

  • Weichert, K. et al. Phase boundary propagation in large LiFePO4 single crystals on delithiation. J. Am. Chem. Soc. 134, 2988–2992 (2012).

    CAS 

    Google Scholar 

  • Tamura, H., Mita, K., Tanaka, A. & Ito, M. Mechanism of hydroxylation of metal oxide surfaces. J. Colloid Interface Sci. 243, 202–207 (2001).

    CAS 

    Google Scholar 

  • Anderson, M. & Rubin, A. Adsorption of inorganics at solid-liquid interfaces. Soil Sci. 133, 257–258 (1982).

    Google Scholar 

  • Zenkin, S., Kos, Š. & Musil, J. Hydrophobicity of thin films of compounds of low-electronegativity metals. J. Am. Ceram. Soc. 97, 2713–2717 (2014).

    CAS 

    Google Scholar 

  • Xi, Y., Qi, Y., Mao, Z., Yang, Z. & Zhang, J. Surface hydrophobic modification of TiO2 and its application to preparing PMMA/TiO2 composite cool material with improved hydrophobicity and anti-icing property. Constr. Build. Mater. 266, 120916 (2021).

    CAS 

    Google Scholar 

  • Luo, S., Huo, J. C., Lei, H. & Deng, J. Study of the hydrophobic modification of chromium sesquioxide with lauric acid. Adv. Mater. Res. 535–537, 1586–1590 (2012).

    Google Scholar 

  • Bischoff, M., Biriukov, D., Předota, M., Roke, S. & Marchioro, A. Surface potential and interfacial water order at the amorphous TiO2 nanoparticle/aqueous interface. J. Phys. Chem. C 124, 10961–10974 (2020).

    CAS 

    Google Scholar 

  • Lützenkirchen, J. Comparison of 1-pK and 2-pK versions of surface complexation theory by the goodness of fit in describing surface charge data of (hydr)oxides. Environ. Sci. Technol. 32, 3149–3154 (1998).

    Google Scholar 

  • Li, M. et al. Relationship between surface hydroxyl complexation and equi-acidity point pH of MnO2 and its adsorption for Co2+ and Ni2+. ACS Omega 7, 9602–9613 (2022).

    CAS 

    Google Scholar 

  • Kitagawa, Y., Yamaguchi, S. & Yorozu, Y. Effects of sodium chloride concentrations on zeta potentials of clay minerals estimated by an electrokinetic sonic amplitude method. Clay Sci. 12, 91–96 (2003).

    CAS 

    Google Scholar 

  • Vilasau, J. et al. Stability of oil-in-water paraffin emulsions prepared in a mixed ionic/nonionic surfactant system. Colloids Surf. A Physicochem. Eng. Asp. 389, 222–229 (2011).

    CAS 

    Google Scholar 

  • Behrens, S. H. & Grier, D. G. The charge of glass and silica surfaces. J. Chem. Phys. 115, 6716–6721 (2001).

    CAS 

    Google Scholar 

  • Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Google Scholar 

  • Kluczka, J. A review on the recovery and separation of gallium and indium from waste. Resources 13, 35 (2024).

    Google Scholar 

  • Baes, C. F. & Mesmer, R. S. The hydrolysis of cations. Ber. Bunsenges. Phys. Chem. 81, 245–246 (1977).

  • Brown, M. A., Goel, A. & Abbas, Z. Effect of electrolyte concentration on the Stern layer thickness at a charged interface. Angew. Chem. Int. Ed. 55, 3790–3794 (2016).

  • Li, Y. et al. Fluid-enhanced surface diffusion controls intraparticle phase transformations. Nat. Mater. 17, 915–922 (2018).

    CAS 

    Google Scholar 

  • Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, 2001).

    Google Scholar 

  • Turner, B. F. & Fein, J. B. Protofit: a program for determining surface protonation constants from titration data. Comput. Geosci. 32, 1344–1356 (2006).

    CAS 

    Google Scholar 

  • Piasecki, W. 1pK and 2pK protonation models in the theoretical description of simple ion adsorption at the oxide/electrolyte interface: a comparative study of the predicted and observed enthalpic effects accompanying adsorption of simple ions. Langmuir 18, 4809–4818 (2002).

    CAS 

    Google Scholar 

  • Schmickler, W. & Santos, E. in Interfacial Electrochemistry (eds Schmickler, W. & Santos, E.) 177–193 (Springer, 2010).

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS 

    Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS 

    Google Scholar 

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS 

    Google Scholar 

  • Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    CAS 

    Google Scholar 

  • Kylänpää, I. et al. Accuracy of ab initio electron correlation and electron densities in vanadium dioxide. Phys. Rev. Mater. 1, 065408 (2017).

    Google Scholar 

  • Stahl, B. & Bredow, T. Critical assessment of the DFT+U approach for the prediction of vanadium dioxide properties. J. Comput. Chem. 41, 258–265 (2020).

    CAS 

    Google Scholar 

  • Srivastava, S., Uberuaga, B. P. & Asta, M. Density functional theory study of local environment effects on oxygen vacancy properties in magnetite. J. Phys. Chem. C 127, 17460–17472 (2023).

    CAS 

    Google Scholar 

  • Freysoldt, C. et al. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014).

    Google Scholar 

  • Freysoldt, C., Neugebauer, J. & Van De Walle, C. G. Fully ab initio finite-size corrections for charged-defect supercell calculations. Phys. Rev. Lett. 102, 016402 (2009).

    Google Scholar 

  • Freysoldt, C., Neugebauer, J. & Van De Walle, C. G. Electrostatic interactions between charged defects in supercells. Phys. Status Solidi B 248, 1067–1076 (2011).

    CAS 

    Google Scholar 

  • Kumagai, Y. & Oba, F. Electrostatics-based finite-size corrections for first-principles point defect calculations. Phys. Rev. B 89, 195205 (2014).

    Google Scholar 

  • Gonze, X. & Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355–10368 (1997).

    CAS 

    Google Scholar 

  • Liu, B., Xiao, H., Zhang, Y., Aidhy, D. S. & Weber, W. J. Investigation of oxygen point defects in cubic ZrO2 by density functional theory. Comput. Mater. Sci. 92, 22–27 (2014).

    CAS 

    Google Scholar 

  • Bratsch, S. G. Standard electrode potentials and temperature coefficients in water at 298.15 K. J. Phys. Chem. Ref. Data 18, 1–21 (1989).

    CAS 

    Google Scholar 

  • Guo, R. Data for ‘Mem-sensing by surface ion migration within Debye length’. Zenodo https://doi.org/10.5281/zenodo.15758758 (2025).


  • Leave a Reply

    Your email address will not be published. Required fields are marked *