
Suresh, S. Fatigue of Materials 2nd edn (Cambridge Univ. Press, 1998).
Peralta, P. & Laird, C. in Physical Metallurgy 5th edn (eds Laughlin D. E. & Hono K.) 1765–1880 (Elsevier, 2014).
Ashby, M. F. Materials Selection in Mechanical Design 3rd edn, 665 (Elsevier, 2004).
Meyers, M. A. & Chawla, K. K. Mechanical Behavior of Materials 2nd edn, 882 (Cambridge Univ. Press, 2009).
Pineau, A., McDowell, D. L., Busso, E. P. & Antolovich, S. D. Failure of metals II: Fatigue. Acta Mater. 107, 484–507 (2016).
Google Scholar
Wöhler, A. Über die Festigkeitsversuche mit Eisen und Stahl. Z. Bauwes. 20, 73–106 (1870).
Ewing, J. A. & Humfrey, J. C. W. The fracture of metals under repeated alternations of stress. Philos. Trans. R. Soc. A 200, 241–250 (1903).
Mughrabi, H. Cyclic slip irreversibilities and the evolution of fatigue damage. Metall. Mater. Trans. B 40, 431–453 (2009).
Basquin, O. H. The exponential law of endurance tests. Proc. Am. Soc. Test. Mater. 10, 625–630 (1910).
Coffin, L. F. A study of the effects of cyclic thermal stresses on a ductile metal. Trans. Am. Inst. Min. Metall. Eng. 76, 931–950 (1954).
Google Scholar
Manson, S. S. Behavior of Materials under Conditions of Thermal Stress (Lewis Flight Propulsion Laboratory, 1954).
Morrow, J. D. in Internal Friction, Damping and Cyclic Plasticity Special Technical Publication 378 (ed B. J. Lazan) 45–87 (ASTM, 1965).
Feltner, C. E. & Laird, C. Cyclic stress–strain response of fcc metals and alloys.1. Phenomenological experiments. Acta Metall. 15, 1621–1632 (1967).
Google Scholar
Winter, A. T. Model for fatigue of copper at low plastic strain amplitudes. Philos. Mag. 30, 719–738 (1974).
Google Scholar
Fine, M. E. Fatigue resistance of metals. Metall. Trans. A 11, 365–379 (1980).
Mughrabi, H. Cyclic hardening and saturation behavior of copper single-crystals. Mater. Sci. Eng. 33, 207–223 (1978).
Google Scholar
Basinski, Z. S. & Basinski, S. J. Fundamental aspects of low amplitude cyclic deformation in face-centred cubic crystals. Prog. Mater. Sci. 36, 89–148 (1992).
Google Scholar
Polák, J. & Klesnil, M. Cyclic stress–strain response and dislocation structures in polycrystalline copper. Mater. Sci. Eng. 63, 189–196 (1984).
Bathias, C. There is no infinite fatigue life in metallic materials. Fatigue Fract. Eng. Mater. Struct. 22, 559–565 (1999).
Google Scholar
Zimmermann, M. Diversity of damage evolution during cyclic loading at very high numbers of cycles. Int. Mater. Rev. 57, 73–91 (2012).
Google Scholar
Murphy, M. C. The engineering fatigue properties of wrought copper. Fatigue Eng. Mater. Struct. 4, 199–234 (1981).
Google Scholar
Pang, J. C., Li, S. X., Wang, Z. G. & Zhang, Z. F. General relation between tensile strength and fatigue strength of metallic materials. Mater. Sci. Eng. A 564, 331–341 (2013).
Google Scholar
Stinville, J. C. et al. On the origins of fatigue strength in crystalline metallic materials. Science 377, 1065–1071 (2022).
Google Scholar
Qu, Z. et al. High fatigue resistance in a titanium alloy via near-void-free 3D printing. Nature 626, 999–1004 (2024).
Google Scholar
Feng, R., An, K. & Liaw, P. K. Fatigue behavior and mechanisms of high-entropy alloys. High Entropy Alloys Mater. 1, 4–24 (2022).
Hull, D. & Bacon, D. J. Introduction to Dislocations 268 (Elsevier, 2011).
Paris, P. & Erdogan, F. A critical analysis of crack propagation laws. Trans. ASME 85, 528–533 (1963).
Google Scholar
Agnew, S. R., Vinogradov, A. Y., Hashimoto, S. & Weertman, J. R. Overview of fatigue performance of Cu processed by severe plastic deformation. J. Electron. Mater. 28, 1038–1044 (1999).
Google Scholar
Hanlon, T., Kwon, Y. N. & Suresh, S. Grain size effects on the fatigue response of nanocrystalline metals. Scr. Mater. 49, 675–680 (2003).
Google Scholar
Mughrabi, H. & Höppel, H. W. Cyclic deformation and fatigue properties of very fine-grained metals and alloys. Int. J. Fatigue 32, 1413–1427 (2010).
Google Scholar
Höppel, H. W., Zhou, Z. M., Mughrabi, H. & Valiev, R. Z. Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Philos. Mag. A 82, 1781–1794 (2002).
Long, J. Z. et al. Improved fatigue resistance of gradient nanograined Cu. Acta Mater. 166, 56–66 (2019).
Google Scholar
Lu, L. et al. Ultrahigh strength and high electrical conductivity in copper. Science 304, 422–426 (2004).
Google Scholar
Pan, Q. S. & Lu, L. Strain-controlled cyclic stability and properties of Cu with highly oriented nanoscale twins. Acta Mater. 81, 248–257 (2014).
Google Scholar
Fang, T. H., Li, W. L., Tao, N. R. & Lu, K. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331, 1587–1590 (2011).
Google Scholar
Roland, T., Retraint, D., Lu, K. & Lu, J. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scr. Mater. 54, 1949–1954 (2006).
Google Scholar
Mughrabi, H. Fatigue, an everlasting materials problem—still en vogue. Proc. Eng. 2, 3–26 (2010).
Google Scholar
Lavenstein, S. & El-Awady, J. A. Micro-scale fatigue mechanisms in metals: insights gained from small-scale experiments and discrete dislocation dynamics simulations. Curr. Opin. Solid State Mater. 23, 100765 (2019).
Google Scholar
Echlin, M. P. et al. Serial sectioning in the SEM for three dimensional materials science. Curr. Opin. Solid State Mater. 24, 100817 (2020).
Google Scholar
Stinville, J. C. et al. Insights into plastic localization by crystallographic slip from emerging experimental and numerical approaches. Annu. Rev. Mater. Res. 53, 275–317 (2023).
Google Scholar
McEvily, A. J. & Boettner, R. C. On fatigue crack propagation in F.C.C. metals. Acta Metall. 11, 725–743 (1963).
Kim, W. H. & Laird, C. Crack nucleation and stage I propagation in high strain fatigue—2. Mechanism. Acta Metall. 26, 789–799 (1978).
Google Scholar
Christ, H. J. On the orientation of cyclic-slip-induced intergranular fatigue cracks in face-centered cubic metals. Mater. Sci. Eng. A 117, L25–L29 (1989).
Zhang, Z. F. & Wang, Z. G. Grain boundary effects on cyclic deformation and fatigue damage. Prog. Mater. Sci. 53, 1025–1099 (2008).
Suresh, S. & Ritchie, R. O. A geometric model for fatigue crack closure induced by fracture surface-roughness. Metall. Trans. A 13, 1627–1631 (1982).
Lavenstein, S., Gu, Y., Madisetti, D. & El-Awady, J. A. The heterogeneity of persistent slip band nucleation and evolution in metals at the micrometer scale. Science 370, eabb2690 (2020).
Google Scholar
Mughrabi, H. Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metall. 31, 1367–1379 (1983).
Google Scholar
Thompson, N., Wadsworth, N. & Louat, N. The origin of fatigue fracture in copper. Philos. Mag. 1, 113–126 (1956).
Google Scholar
Essmann, U., Gösele, U. & Mughrabi, H. A model of extrusions and intrusions in fatigued metals. 1. Point-defect production and the growth of extrusions. Philos. Mag. A 44, 405–426 (1981).
Google Scholar
Polák, J. On the role of point defects in fatigue crack initiation. Mater. Sci. Eng. 92, 71–80 (1987).
Man, J., Obrtlík, K. & Polák, J. Extrusions and intrusions in fatigued metals. Part 1. State of the art and history. Philos. Mag. 89, 1295–1336 (2009).
Google Scholar
Mughrabi, H., Ackermann, F. & Herz, K. in Fatigue Mechanisms Special Technical Publication 675 (ed. Fong, J. T.) 68–105 (ASTM, 1979).
Zhang, G. P. et al. Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater. 54, 3127–3139 (2006).
Google Scholar
An, X. H., Wu, S. D., Wang, Z. G. & Zhang, Z. F. Significance of stacking fault energy in bulk nanostructured materials: insights from Cu and its binary alloys as model systems. Prog. Mater. Sci. 101, 1–45 (2019).
Google Scholar
Pan, Q. S. et al. History-independent cyclic response of nanotwinned metals. Nature 551, 214–217 (2017).
Google Scholar
Koyama, M. et al. Bone-like crack resistance in hierarchical metastable nanolaminate steels. Science 355, 1055–1057 (2017).
Google Scholar
Gu, J. et al. Phase engineering of nanostructural metallic materials: classification, structures, and applications. Chem. Rev. 124, 1247–1287 (2024).
Google Scholar
Pan, Q. S. & Lu, L. Improved fatigue resistance of gradient nanograined metallic materials: suppress strain localization and damage accumulation. Scr. Mater. 187, 301–306 (2020).
Google Scholar
Inui, H., Hong, S. I. & Laird, C. A TEM study of dislocation-structures in fatigued Cu–16 at.% Al single crystals. Acta Metall. Mater. 38, 2261–2274 (1990).
Google Scholar
Reed, R. The Superalloys: Fundamentals and Applications (Cambridge Univ. Press, 2006).
Skelton, R. P. High Temperature Fatigue—Properties and Prediction (Elsevier, 1987).
Pollock, T. M. & Tin, S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure, and properties. J. Propuls. Power 22, 361–374 (2006).
Google Scholar
Antolovich, S. D., Liu, S. & Baur, R. Low-cycle fatigue behavior of René 80 at elevated temperature. Metall. Trans. A 12, 473–481 (1981).
Google Scholar
Jin, T. et al. Research process on microstructural stability and mechanical behavior of advanced Ni-based single crystal superalloys. Acta Metall. Sin. 51, 1153–1162 (2015).
Google Scholar
Cervellon, A. et al. Crack initiation mechanisms during very high cycle fatigue of Ni-based single crystal superalloys at high temperature. Acta Mater. 188, 131–144 (2020).
Google Scholar
Pineau, A. & Antolovich, S. D. High temperature fatigue of nickel-base superalloys—a review with special emphasis on deformation modes and oxidation. Eng. Fail. Anal. 16, 2668–2697 (2009).
Google Scholar
Neu, R. W. & Sehitoglu, H. Thermomechanical fatigue, oxidation, and creep. 1. Damage mechanisms. Metall. Trans. A 20, 1755–1767 (1989).
Gabb, T. P. et al. Fatigue resistance of the grain size transition zone in a dual microstructure superalloy disk. Int. J. Fatigue 33, 414–426 (2011).
Google Scholar
Michel, H. T. et al. Mechanical properties of cast and wrought hybrid disks. In 13th International Symposium on Superalloys (eds Hardy, M. et al.) 539–548 (Wiley, 2016).
Latypova, M. A., Makhmutov, B. B. & Yerzhanov, A. S. Layered metal composites as a promising class of modern materials. Prog. Phys. Met. 25, 708–735 (2024).
Gao, K. et al. The deformation characteristics, fracture behavior and strengthening–toughening mechanisms of laminated metal composites: a review. Metals 10, 1–19 (2020).
Kanezaki, T. et al. Effects of hydrogen on fatigue crack growth behavior of austenitic stainless steels. Int. J. Hydrog. Energy 33, 2604–2619 (2008).
Google Scholar
Adedipe, O., Brennan, F. & Kolios, A. Review of corrosion fatigue in offshore structures: present status and challenges in the offshore wind sector. Renew. Sust. Energy Rev. 61, 141–154 (2016).
Socie, D. & Marquis, G. Multiaxial Fatigue (Society of Automotive Engineers, 1999).
Foti, P., Mohammad Javad Razavi, S., Fatemi, A. & Berto, F. Multiaxial fatigue of additively manufactured metallic components: a review of the failure mechanisms and fatigue life prediction methodologies. Prog. Mater. Sci. 137, 101126 (2023).
Pan, Q. S. et al. Superior resistance to cyclic creep in a gradient structured steel. Science 388, 82–88 (2025).
Google Scholar
Sanaei, N. & Fatemi, A. Defects in additive manufactured metals and their effect on fatigue performance: a state-of-the-art review. Prog. Mater. Sci. 117, 100724 (2021).
Google Scholar
Dan, C. et al. Achieving ultrahigh fatigue resistance in AlSi10Mg alloy by additive manufacturing. Nat. Mater. 22, 1182–1188 (2023).
Google Scholar
Yadollahi, A. & Shamsaei, N. Additive manufacturing of fatigue resistant materials: challenges and opportunities. Int. J. Fatigue 98, 14–31 (2017).
Martin, J. H. et al. 3D printing of high-strength aluminium alloys. Nature 549, 365–369 (2017).
Google Scholar
Yeh, J. W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).
Google Scholar
Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213–218 (2004).
George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).
Google Scholar
Smith, T. M. et al. A 3D printable alloy designed for extreme environments. Nature 617, 513–518 (2023).
Google Scholar
Gludovatz, B. et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016).
Google Scholar
Liu, D. et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin. Science 378, 978–983 (2022).
Google Scholar
Cowles, B. A. High cycle fatigue in aircraft gas turbines—an industry perspective. Int. J. Fract. 80, 147–163 (1996).
Google Scholar
Stoecker, C., Zimmermann, M. & Christ, H.-J. Effect of precipitation condition, prestrain and temperature on the fatigue behaviour of wrought nickel-based superalloys in the VHCF range. Acta Mater. 59, 5288–5304 (2011).
Google Scholar
Stinville, J. C. et al. Fatigue deformation in a polycrystalline nickel base superalloy at intermediate and high temperature: competing failure modes. Acta Mater. 152, 16–33 (2018).
Google Scholar
Stephens, R., Chung, J. & Glinka, G. Low Temperature Fatigue Behavior of Steels—a Review Technical Paper 790517 (SAE, 1979).
Kim, S.-K. et al. Estimation of fatigue crack growth rate for 7% nickel steel under room and cryogenic temperatures using damage-coupled finite element analysis. Metals 5, 603–627 (2015).
Hart, G. L. W., Mueller, T., Toher, C. & Curtarolo, S. Machine learning for alloys. Nat. Rev. Mater. 6, 730–755 (2021).
Xu, Z. & Zhang, Z. The need for standardizing fatigue data reporting. Nat. Mater. 23, 866–868 (2024).
Google Scholar
Differt, K., Essmann, U. & Mughrabi, H. A model of extrusions and intrusions in fatigued metals II. Surface roughening by random irreversible slip. Philos. Mag. A 54, 237–258 (1986).
Google Scholar