• August 4, 2025
  • Live Match Score
  • 0


  • Suresh, S. Fatigue of Materials 2nd edn (Cambridge Univ. Press, 1998).

  • Peralta, P. & Laird, C. in Physical Metallurgy 5th edn (eds Laughlin D. E. & Hono K.) 1765–1880 (Elsevier, 2014).

  • Ashby, M. F. Materials Selection in Mechanical Design 3rd edn, 665 (Elsevier, 2004).

  • Meyers, M. A. & Chawla, K. K. Mechanical Behavior of Materials 2nd edn, 882 (Cambridge Univ. Press, 2009).

  • Pineau, A., McDowell, D. L., Busso, E. P. & Antolovich, S. D. Failure of metals II: Fatigue. Acta Mater. 107, 484–507 (2016).

    CAS 

    Google Scholar 

  • Wöhler, A. Über die Festigkeitsversuche mit Eisen und Stahl. Z. Bauwes. 20, 73–106 (1870).

    Google Scholar 

  • Ewing, J. A. & Humfrey, J. C. W. The fracture of metals under repeated alternations of stress. Philos. Trans. R. Soc. A 200, 241–250 (1903).

    Google Scholar 

  • Mughrabi, H. Cyclic slip irreversibilities and the evolution of fatigue damage. Metall. Mater. Trans. B 40, 431–453 (2009).

    Google Scholar 

  • Basquin, O. H. The exponential law of endurance tests. Proc. Am. Soc. Test. Mater. 10, 625–630 (1910).

    Google Scholar 

  • Coffin, L. F. A study of the effects of cyclic thermal stresses on a ductile metal. Trans. Am. Inst. Min. Metall. Eng. 76, 931–950 (1954).

    CAS 

    Google Scholar 

  • Manson, S. S. Behavior of Materials under Conditions of Thermal Stress (Lewis Flight Propulsion Laboratory, 1954).

  • Morrow, J. D. in Internal Friction, Damping and Cyclic Plasticity Special Technical Publication 378 (ed B. J. Lazan) 45–87 (ASTM, 1965).

  • Feltner, C. E. & Laird, C. Cyclic stress–strain response of fcc metals and alloys.1. Phenomenological experiments. Acta Metall. 15, 1621–1632 (1967).

    CAS 

    Google Scholar 

  • Winter, A. T. Model for fatigue of copper at low plastic strain amplitudes. Philos. Mag. 30, 719–738 (1974).

    CAS 

    Google Scholar 

  • Fine, M. E. Fatigue resistance of metals. Metall. Trans. A 11, 365–379 (1980).

    Google Scholar 

  • Mughrabi, H. Cyclic hardening and saturation behavior of copper single-crystals. Mater. Sci. Eng. 33, 207–223 (1978).

    CAS 

    Google Scholar 

  • Basinski, Z. S. & Basinski, S. J. Fundamental aspects of low amplitude cyclic deformation in face-centred cubic crystals. Prog. Mater. Sci. 36, 89–148 (1992).

    CAS 

    Google Scholar 

  • Polák, J. & Klesnil, M. Cyclic stress–strain response and dislocation structures in polycrystalline copper. Mater. Sci. Eng. 63, 189–196 (1984).

    Google Scholar 

  • Bathias, C. There is no infinite fatigue life in metallic materials. Fatigue Fract. Eng. Mater. Struct. 22, 559–565 (1999).

    CAS 

    Google Scholar 

  • Zimmermann, M. Diversity of damage evolution during cyclic loading at very high numbers of cycles. Int. Mater. Rev. 57, 73–91 (2012).

    CAS 

    Google Scholar 

  • Murphy, M. C. The engineering fatigue properties of wrought copper. Fatigue Eng. Mater. Struct. 4, 199–234 (1981).

    CAS 

    Google Scholar 

  • Pang, J. C., Li, S. X., Wang, Z. G. & Zhang, Z. F. General relation between tensile strength and fatigue strength of metallic materials. Mater. Sci. Eng. A 564, 331–341 (2013).

    CAS 

    Google Scholar 

  • Stinville, J. C. et al. On the origins of fatigue strength in crystalline metallic materials. Science 377, 1065–1071 (2022).

    CAS 

    Google Scholar 

  • Qu, Z. et al. High fatigue resistance in a titanium alloy via near-void-free 3D printing. Nature 626, 999–1004 (2024).

    CAS 

    Google Scholar 

  • Feng, R., An, K. & Liaw, P. K. Fatigue behavior and mechanisms of high-entropy alloys. High Entropy Alloys Mater. 1, 4–24 (2022).

    Google Scholar 

  • Hull, D. & Bacon, D. J. Introduction to Dislocations 268 (Elsevier, 2011).

  • Paris, P. & Erdogan, F. A critical analysis of crack propagation laws. Trans. ASME 85, 528–533 (1963).

    CAS 

    Google Scholar 

  • Agnew, S. R., Vinogradov, A. Y., Hashimoto, S. & Weertman, J. R. Overview of fatigue performance of Cu processed by severe plastic deformation. J. Electron. Mater. 28, 1038–1044 (1999).

    CAS 

    Google Scholar 

  • Hanlon, T., Kwon, Y. N. & Suresh, S. Grain size effects on the fatigue response of nanocrystalline metals. Scr. Mater. 49, 675–680 (2003).

    CAS 

    Google Scholar 

  • Mughrabi, H. & Höppel, H. W. Cyclic deformation and fatigue properties of very fine-grained metals and alloys. Int. J. Fatigue 32, 1413–1427 (2010).

    CAS 

    Google Scholar 

  • Höppel, H. W., Zhou, Z. M., Mughrabi, H. & Valiev, R. Z. Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Philos. Mag. A 82, 1781–1794 (2002).

    Google Scholar 

  • Long, J. Z. et al. Improved fatigue resistance of gradient nanograined Cu. Acta Mater. 166, 56–66 (2019).

    CAS 

    Google Scholar 

  • Lu, L. et al. Ultrahigh strength and high electrical conductivity in copper. Science 304, 422–426 (2004).

    CAS 

    Google Scholar 

  • Pan, Q. S. & Lu, L. Strain-controlled cyclic stability and properties of Cu with highly oriented nanoscale twins. Acta Mater. 81, 248–257 (2014).

    CAS 

    Google Scholar 

  • Fang, T. H., Li, W. L., Tao, N. R. & Lu, K. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331, 1587–1590 (2011).

    CAS 

    Google Scholar 

  • Roland, T., Retraint, D., Lu, K. & Lu, J. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scr. Mater. 54, 1949–1954 (2006).

    CAS 

    Google Scholar 

  • Mughrabi, H. Fatigue, an everlasting materials problem—still en vogue. Proc. Eng. 2, 3–26 (2010).

    CAS 

    Google Scholar 

  • Lavenstein, S. & El-Awady, J. A. Micro-scale fatigue mechanisms in metals: insights gained from small-scale experiments and discrete dislocation dynamics simulations. Curr. Opin. Solid State Mater. 23, 100765 (2019).

    CAS 

    Google Scholar 

  • Echlin, M. P. et al. Serial sectioning in the SEM for three dimensional materials science. Curr. Opin. Solid State Mater. 24, 100817 (2020).

    CAS 

    Google Scholar 

  • Stinville, J. C. et al. Insights into plastic localization by crystallographic slip from emerging experimental and numerical approaches. Annu. Rev. Mater. Res. 53, 275–317 (2023).

    CAS 

    Google Scholar 

  • McEvily, A. J. & Boettner, R. C. On fatigue crack propagation in F.C.C. metals. Acta Metall. 11, 725–743 (1963).

    Google Scholar 

  • Kim, W. H. & Laird, C. Crack nucleation and stage I propagation in high strain fatigue—2. Mechanism. Acta Metall. 26, 789–799 (1978).

    CAS 

    Google Scholar 

  • Christ, H. J. On the orientation of cyclic-slip-induced intergranular fatigue cracks in face-centered cubic metals. Mater. Sci. Eng. A 117, L25–L29 (1989).

    Google Scholar 

  • Zhang, Z. F. & Wang, Z. G. Grain boundary effects on cyclic deformation and fatigue damage. Prog. Mater. Sci. 53, 1025–1099 (2008).

    Google Scholar 

  • Suresh, S. & Ritchie, R. O. A geometric model for fatigue crack closure induced by fracture surface-roughness. Metall. Trans. A 13, 1627–1631 (1982).

    Google Scholar 

  • Lavenstein, S., Gu, Y., Madisetti, D. & El-Awady, J. A. The heterogeneity of persistent slip band nucleation and evolution in metals at the micrometer scale. Science 370, eabb2690 (2020).

    CAS 

    Google Scholar 

  • Mughrabi, H. Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metall. 31, 1367–1379 (1983).

    CAS 

    Google Scholar 

  • Thompson, N., Wadsworth, N. & Louat, N. The origin of fatigue fracture in copper. Philos. Mag. 1, 113–126 (1956).

    CAS 

    Google Scholar 

  • Essmann, U., Gösele, U. & Mughrabi, H. A model of extrusions and intrusions in fatigued metals. 1. Point-defect production and the growth of extrusions. Philos. Mag. A 44, 405–426 (1981).

    CAS 

    Google Scholar 

  • Polák, J. On the role of point defects in fatigue crack initiation. Mater. Sci. Eng. 92, 71–80 (1987).

    Google Scholar 

  • Man, J., Obrtlík, K. & Polák, J. Extrusions and intrusions in fatigued metals. Part 1. State of the art and history. Philos. Mag. 89, 1295–1336 (2009).

    CAS 

    Google Scholar 

  • Mughrabi, H., Ackermann, F. & Herz, K. in Fatigue Mechanisms Special Technical Publication 675 (ed. Fong, J. T.) 68–105 (ASTM, 1979).

  • Zhang, G. P. et al. Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater. 54, 3127–3139 (2006).

    CAS 

    Google Scholar 

  • An, X. H., Wu, S. D., Wang, Z. G. & Zhang, Z. F. Significance of stacking fault energy in bulk nanostructured materials: insights from Cu and its binary alloys as model systems. Prog. Mater. Sci. 101, 1–45 (2019).

    CAS 

    Google Scholar 

  • Pan, Q. S. et al. History-independent cyclic response of nanotwinned metals. Nature 551, 214–217 (2017).

    CAS 

    Google Scholar 

  • Koyama, M. et al. Bone-like crack resistance in hierarchical metastable nanolaminate steels. Science 355, 1055–1057 (2017).

    CAS 

    Google Scholar 

  • Gu, J. et al. Phase engineering of nanostructural metallic materials: classification, structures, and applications. Chem. Rev. 124, 1247–1287 (2024).

    CAS 

    Google Scholar 

  • Pan, Q. S. & Lu, L. Improved fatigue resistance of gradient nanograined metallic materials: suppress strain localization and damage accumulation. Scr. Mater. 187, 301–306 (2020).

    CAS 

    Google Scholar 

  • Inui, H., Hong, S. I. & Laird, C. A TEM study of dislocation-structures in fatigued Cu–16 at.% Al single crystals. Acta Metall. Mater. 38, 2261–2274 (1990).

    CAS 

    Google Scholar 

  • Reed, R. The Superalloys: Fundamentals and Applications (Cambridge Univ. Press, 2006).

  • Skelton, R. P. High Temperature Fatigue—Properties and Prediction (Elsevier, 1987).

  • Pollock, T. M. & Tin, S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure, and properties. J. Propuls. Power 22, 361–374 (2006).

    CAS 

    Google Scholar 

  • Antolovich, S. D., Liu, S. & Baur, R. Low-cycle fatigue behavior of René 80 at elevated temperature. Metall. Trans. A 12, 473–481 (1981).

    CAS 

    Google Scholar 

  • Jin, T. et al. Research process on microstructural stability and mechanical behavior of advanced Ni-based single crystal superalloys. Acta Metall. Sin. 51, 1153–1162 (2015).

    CAS 

    Google Scholar 

  • Cervellon, A. et al. Crack initiation mechanisms during very high cycle fatigue of Ni-based single crystal superalloys at high temperature. Acta Mater. 188, 131–144 (2020).

    CAS 

    Google Scholar 

  • Pineau, A. & Antolovich, S. D. High temperature fatigue of nickel-base superalloys—a review with special emphasis on deformation modes and oxidation. Eng. Fail. Anal. 16, 2668–2697 (2009).

    CAS 

    Google Scholar 

  • Neu, R. W. & Sehitoglu, H. Thermomechanical fatigue, oxidation, and creep. 1. Damage mechanisms. Metall. Trans. A 20, 1755–1767 (1989).

    Google Scholar 

  • Gabb, T. P. et al. Fatigue resistance of the grain size transition zone in a dual microstructure superalloy disk. Int. J. Fatigue 33, 414–426 (2011).

    CAS 

    Google Scholar 

  • Michel, H. T. et al. Mechanical properties of cast and wrought hybrid disks. In 13th International Symposium on Superalloys (eds Hardy, M. et al.) 539–548 (Wiley, 2016).

  • Latypova, M. A., Makhmutov, B. B. & Yerzhanov, A. S. Layered metal composites as a promising class of modern materials. Prog. Phys. Met. 25, 708–735 (2024).

    Google Scholar 

  • Gao, K. et al. The deformation characteristics, fracture behavior and strengthening–toughening mechanisms of laminated metal composites: a review. Metals 10, 1–19 (2020).

    Google Scholar 

  • Kanezaki, T. et al. Effects of hydrogen on fatigue crack growth behavior of austenitic stainless steels. Int. J. Hydrog. Energy 33, 2604–2619 (2008).

    CAS 

    Google Scholar 

  • Adedipe, O., Brennan, F. & Kolios, A. Review of corrosion fatigue in offshore structures: present status and challenges in the offshore wind sector. Renew. Sust. Energy Rev. 61, 141–154 (2016).

    Google Scholar 

  • Socie, D. & Marquis, G. Multiaxial Fatigue (Society of Automotive Engineers, 1999).

  • Foti, P., Mohammad Javad Razavi, S., Fatemi, A. & Berto, F. Multiaxial fatigue of additively manufactured metallic components: a review of the failure mechanisms and fatigue life prediction methodologies. Prog. Mater. Sci. 137, 101126 (2023).

    Google Scholar 

  • Pan, Q. S. et al. Superior resistance to cyclic creep in a gradient structured steel. Science 388, 82–88 (2025).

    CAS 

    Google Scholar 

  • Sanaei, N. & Fatemi, A. Defects in additive manufactured metals and their effect on fatigue performance: a state-of-the-art review. Prog. Mater. Sci. 117, 100724 (2021).

    CAS 

    Google Scholar 

  • Dan, C. et al. Achieving ultrahigh fatigue resistance in AlSi10Mg alloy by additive manufacturing. Nat. Mater. 22, 1182–1188 (2023).

    CAS 

    Google Scholar 

  • Yadollahi, A. & Shamsaei, N. Additive manufacturing of fatigue resistant materials: challenges and opportunities. Int. J. Fatigue 98, 14–31 (2017).

    Google Scholar 

  • Martin, J. H. et al. 3D printing of high-strength aluminium alloys. Nature 549, 365–369 (2017).

    CAS 

    Google Scholar 

  • Yeh, J. W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).

    CAS 

    Google Scholar 

  • Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213–218 (2004).

    Google Scholar 

  • George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).

    CAS 

    Google Scholar 

  • Smith, T. M. et al. A 3D printable alloy designed for extreme environments. Nature 617, 513–518 (2023).

    CAS 

    Google Scholar 

  • Gludovatz, B. et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016).

    CAS 

    Google Scholar 

  • Liu, D. et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin. Science 378, 978–983 (2022).

    CAS 

    Google Scholar 

  • Cowles, B. A. High cycle fatigue in aircraft gas turbines—an industry perspective. Int. J. Fract. 80, 147–163 (1996).

    CAS 

    Google Scholar 

  • Stoecker, C., Zimmermann, M. & Christ, H.-J. Effect of precipitation condition, prestrain and temperature on the fatigue behaviour of wrought nickel-based superalloys in the VHCF range. Acta Mater. 59, 5288–5304 (2011).

    CAS 

    Google Scholar 

  • Stinville, J. C. et al. Fatigue deformation in a polycrystalline nickel base superalloy at intermediate and high temperature: competing failure modes. Acta Mater. 152, 16–33 (2018).

    CAS 

    Google Scholar 

  • Stephens, R., Chung, J. & Glinka, G. Low Temperature Fatigue Behavior of Steels—a Review Technical Paper 790517 (SAE, 1979).

  • Kim, S.-K. et al. Estimation of fatigue crack growth rate for 7% nickel steel under room and cryogenic temperatures using damage-coupled finite element analysis. Metals 5, 603–627 (2015).

    Google Scholar 

  • Hart, G. L. W., Mueller, T., Toher, C. & Curtarolo, S. Machine learning for alloys. Nat. Rev. Mater. 6, 730–755 (2021).

    Google Scholar 

  • Xu, Z. & Zhang, Z. The need for standardizing fatigue data reporting. Nat. Mater. 23, 866–868 (2024).

    CAS 

    Google Scholar 

  • Differt, K., Essmann, U. & Mughrabi, H. A model of extrusions and intrusions in fatigued metals II. Surface roughening by random irreversible slip. Philos. Mag. A 54, 237–258 (1986).

    CAS 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *