• August 8, 2025
  • Live Match Score
  • 0


  • Iwahara, H., Esaka, T., Uchida, H. & Maeda, N. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ion. 3–4, 359–363 (1981).

    Google Scholar 

  • Yamazaki, Y., Hernandez-Sanchez, R. & Haile, S. M. High total proton conductivity in large-grained yttrium-doped barium zirconate. Chem. Mater. 21, 2755–2762 (2009).

    CAS 

    Google Scholar 

  • Hyodo, J., Kitabayashi, K., Hoshino, K., Okuyama, Y. & Yamazaki, Y. Fast and stable proton conduction in heavily scandium-doped polycrystalline barium zirconate at intermediate temperatures. Adv. Energy Mater. 10, 2000213 (2020).

    CAS 

    Google Scholar 

  • Kanno, R. & Murayama, M. Lithium ionic conductor thio-LISICON. J. Electrochem. Soc. 148, A742–A746 (2001).

    CAS 

    Google Scholar 

  • Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    CAS 

    Google Scholar 

  • Duan, C. et al. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 349, 1321–1326 (2015).

    CAS 

    Google Scholar 

  • Morejudo, S. H. et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353, 563–566 (2016).

    CAS 

    Google Scholar 

  • Wang, J., Wasmu, S. & Savinel, R. F. Evaluation of ethanol, 1-propanol, and 2-propanol in a direct oxidation polymer-electrolyte fuel cell. J. Electrochem. Soc. 142, 4218–4224 (1995).

    CAS 

    Google Scholar 

  • Fukui, K., Iimura, S., Iskandarov, A., Tada, T. & Hosono, H. Room-temperature fast H conduction in oxygen-substituted lanthanum hydride. J. Am. Chem. Soc. 144, 1523–1527 (2022).

    CAS 

    Google Scholar 

  • Haile, S. M., Chisholm, C. R. I., Sasaki, K., Boysen, D. A. & Uda, T. Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes. Faraday Discuss. 134, 17–39 (2007).

    CAS 

    Google Scholar 

  • Kreuer, K. D. Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333–359 (2003).

    CAS 

    Google Scholar 

  • Fujii, S. et al. Emerging computational and machine learning methodologies for proton-conducting oxides: materials discovery and fundamental understanding. Sci. Technol. Adv. Mater. 25, 2416383 (2024).

    Google Scholar 

  • Kreuer, K. D. Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ion. 125, 285–302 (1999).

    CAS 

    Google Scholar 

  • Yamazaki, Y. et al. Proton trapping in yttrium-doped barium zirconate. Nat. Mater. 12, 647–651 (2013).

    CAS 

    Google Scholar 

  • Björketun, M. E., Sundell, P. G. & Wahnström, G. Structure and thermodynamic stability of hydrogen interstitials in BaZrO3 perovskite oxide from density functional calculations. Faraday Discuss. 134, 247–265 (2007).

    Google Scholar 

  • Yamazaki, Y. et al. Oxygen affinity: the missing link enabling prediction of proton conductivities in doped barium zirconates. Chem. Mater. 32, 7292–7300 (2020).

    CAS 

    Google Scholar 

  • Hoshino, K. et al. Probing local environments of oxygen vacancies responsible for hydration in Sc-doped barium zirconates at elevated temperatures: in situ X-ray absorption spectroscopy, thermogravimetry, and active learning ab initio replica exchange Monte Carlo simulations. Chem. Mater. 35, 2289–2301 (2023).

    CAS 

    Google Scholar 

  • Iguchi, F., Tsurui, T., Sata, N., Nagao, Y. & Yugami, H. The relationship between chemical composition distributions and specific grain boundary conductivity in Y-doped BaZrO3 proton conductors. Solid State Ion. 180, 563–568 (2009).

    CAS 

    Google Scholar 

  • Imashuku, S., Uda, T., Nose, Y. & Awakura, Y. To Journal of Phase Equilibria and Diffusion phase relationship of the BaO-ZrO2-YO1.5 system at 1500 and 1600 °C. J. Phase Equilibria Diffus. 31, 348–356 (2010).

    CAS 

    Google Scholar 

  • Fabbri, E., Pergolesi, D., Licoccia, S. & Traversa, E. Does the increase in Y-dopant concentration improve the proton conductivity of BaZr1−xYxO3−δ fuel cell electrolytes? Solid State Ion. 181, 1043–1051 (2010).

    CAS 

    Google Scholar 

  • Toyoura, K., Meng, G., Han, D. & Uda, T. Preferential proton conduction along a three-dimensional dopant network in yttrium-doped barium zirconate: a first-principles study. J. Mater. Chem. A 6, 22721–22730 (2018).

    CAS 

    Google Scholar 

  • Imashuku, S., Uda, T., Ichitsubo, T., Matsubara, E. & Awakura, Y. A pseudoternary phase diagram of the BaO–ZrO2–ScO1.5 system at 1600 °C and solubility of scandia into barium zirconate. J. Phase Equilibria Diffus. 28, 517–522 (2007).

    CAS 

    Google Scholar 

  • Koichi, E. Ceramic materials containing rare earth oxides for solid oxide fuel cell. J. Alloy. Compd. 250, 486–491 (1997).

    Google Scholar 

  • Draber, F. M. et al. Nanoscale percolation in doped BaZrO3 for high proton mobility. Nat. Mater. 19, 338–346 (2020).

    CAS 

    Google Scholar 

  • Saito, K. & Yashima, M. High proton conductivity within the ‘Norby gap’ by stabilizing a perovskite with disordered intrinsic oxygen vacancies. Nat. Commun. 14, 7466 (2023).

    Google Scholar 

  • Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

    CAS 

    Google Scholar 

  • Li, L. & Nino, J. C. Proton-conducting barium stannates: doping strategies and transport properties. Int. J. Hydrog. Energy 38, 1598–1606 (2013).

    CAS 

    Google Scholar 

  • Kinyanjui, F. G. et al. Crystal structure and proton conductivity of BaSn0.6Sc0.4O3–δ: insights from neutron powder diffraction and solid-state NMR spectroscopy. J. Mater. Chem. A 4, 5088–5101 (2016).

    CAS 

    Google Scholar 

  • Kreuer, K. D., Münch, W., Fuchs, A., Klock, U. & Maier, J. Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ion. 145, 295–306 (2001).

    CAS 

    Google Scholar 

  • Hyodo, J., Tsujikawa, K., Shiga, M., Okuyama, Y. & Yamazaki, Y. Accelerated discovery of proton-conducting perovskite oxide by capturing physicochemical fundamentals of hydration. ACS Energy Lett. 6, 2985–2992 (2021).

    CAS 

    Google Scholar 

  • Nowick, A. S. & Vaysleyb, A. V. Isotope effect and proton hopping in high-temperature protonic conductors. Solid State Ion. 97, 17–26 (1997).

    CAS 

    Google Scholar 

  • Yamada, S., Kanayama, K. & Toyoura, K. Nuclear quantum effects on proton diffusivity in perovskite oxides. Phys. Rev. B 111, 064117 (2025).

    CAS 

    Google Scholar 

  • Roy, T., Sahani, S., Madhu, D. & Chandra Sharma, Y. A clean approach of biodiesel production from waste cooking oil by using single phase BaSnO3 as solid base catalyst: mechanism, kinetics & E-study. J. Clean. Prod. 265, 121440 (2020).

    CAS 

    Google Scholar 

  • Haile, S. M., Staneff, G. & Ryu, K. H. Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites. J. Mater. Sci. 36, 1149–1160 (2001).

    CAS 

    Google Scholar 

  • Omata, T., Fuke, T., Otsuka, Y. & Matsuo, S. Hydration behavior of Ba2Sc2O5 with an oxygen-deficient perovskite structure. Solid State Ion. 177, 2447–2451 (2006).

    CAS 

    Google Scholar 

  • Cervera, R. B. et al. Perovskite-structured BaScO2(OH) as a novel proton conductor: heavily hydrated phase obtained via low-temperature synthesis. Chem. Mater. 25, 1483–1489 (2013).

    CAS 

    Google Scholar 

  • Saito, K., Umeda, K., Fujii, K., Mori, K. & Yashima, M. High proton conduction by full hydration in highly oxygen deficient perovskite. J. Mater. Chem. A 12, 13310–13319 (2024).

    CAS 

    Google Scholar 

  • Yamazaki, Y., Yang, C.-K. & Haile, S. M. Unraveling the defect chemistry and proton uptake of yttrium-doped barium zirconate. Scr. Mater. 65, 102–107 (2011).

    CAS 

    Google Scholar 

  • Han, D., Hatada, N. & Uda, T. Chemical expansion of yttrium‐doped barium zirconate and correlation with proton concentration and conductivity. J. Am. Ceram. Soc. 99, 3745–3753 (2016).

    CAS 

    Google Scholar 

  • Knight, K. S. & Bonanos, N. The crystal structures of some doped and undoped alkaline earth cerate perovskites. Mater. Res. Bull. 30, 347–356 (1995).

    CAS 

    Google Scholar 

  • Zheng, M. & Bo, Z. Proton conductivity in Yb-doped strontium cerates. Solid State Ion. 80, 59–65 (1995).

    CAS 

    Google Scholar 

  • Loureiro, F. J. A., Shakel, Z., Graça, V. C. D., Holz, L. I. V. & Fagg, D. P. Benchmarking the yttrium content in the low temperature/low humidity electrical properties of yttrium-doped barium cerate. Ceram. Int. 49, 34303–34308 (2023).

    CAS 

    Google Scholar 

  • Takeuchi, K. et al. The crystal structures and phase transitions in Y-doped BaCeO3: their dependence on Y concentration and hydrogen doping. Solid State Ion. 138, 63–77 (2000).

    CAS 

    Google Scholar 

  • Clark, D. et al. Anomalous low-temperature proton conductivity enhancement in a novel protonic nanocomposite. Phys. Chem. Chem. Phys. 16, 5076–5080 (2014).

    CAS 

    Google Scholar 

  • Nomura, K. et al. Phase transitions, thermal expansions, chemical expansions, and CO2 resistances of Ba(Ce0.8–xZrxY0.1Yb0.1)O3–δ (x = 0.1, 0.4) perovskite-type proton conductors. J. Electrochem. Soc. 169, 024516 (2022).

    CAS 

    Google Scholar 

  • Sone, Y., Ekdunge, P. & Simonsson, D. Proton conductivity of Nafion 117 as measured by a four-electrode AC impedance method. J. Electrochem. Soc. 143, 1254–1259 (1996).

    CAS 

    Google Scholar 

  • Nguyen, N. T. Q. & Yoon, H. H. Preparation and evaluation of BaZr0.1Ce0.7Y0.1Yb0.1O3−δ (BZCYYb) electrolyte and BZCYYb-based solid oxide fuel cells. J. Power Sources 231, 213–218 (2013).

    CAS 

    Google Scholar 

  • Mori, M. et al. Cubic-stabilized zirconia and alumina composites as electrolytes in planar type solid oxide fuel cells. Solid State Ion. 15, 157–164 (1994).

    Google Scholar 

  • Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Google Scholar 

  • Kasamatsu, S., Motoyama, Y., Yoshimi, K. & Aoyama, T. Configuration sampling in multi-component multi-sublattice systems enabled by ab Initio Configuration Sampling Toolkit (abICS). Sci. Technol. Adv. Mater. Methods 3, 2284128 (2023).

    Google Scholar 

  • Kasamatsu, S. et al. Facilitating ab initio configurational sampling of multicomponent solids using an on-lattice neural network model and active learning. J. Chem. Phys. 157, 104114 (2022).

    CAS 

    Google Scholar 

  • Thompson, A. P. et al. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    CAS 

    Google Scholar 

  • Musaelian, A. et al. Learning local equivariant representations for large-scale atomistic dynamics. Nat. Commun. 14, 579 (2023).

    CAS 

    Google Scholar 

  • Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    CAS 

    Google Scholar 

  • Fujii, S., Shimizu, Y., Hyodo, J., Kuwabara, A. & Yamazaki, Y. Discovery of unconventional proton‐conducting inorganic solids via defect‐chemistry‐trained, interpretable machine learning. Adv. Energy Mater. 13, 2301892 (2023).

    CAS 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *