• August 14, 2025
  • Live Match Score
  • 0


  • Dowling, J. P. & Milburn, G. J. Quantum technology: the second quantum revolution. Philos. Trans. A Math. Phys. Eng. Sci. 361, 1655–1674 (2003).

    PubMed 

    Google Scholar 

  • O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).

    Google Scholar 

  • Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165–171 (2007).

    CAS 

    Google Scholar 

  • Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

    Google Scholar 

  • Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000)

  • Ralph, T. C. & Pryde, G. J. Optical quantum computation. Prog. Opt. 54, 209–269 (2010).

    Google Scholar 

  • Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Aspect, A., Grangier, P. & Roger, G. Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460–463 (1981).

    CAS 

    Google Scholar 

  • Bennett, C. H., Bessette, F., Brassard, G., Salvail, L. & Smolin, J. Experimental quantum cryptography. J. Cryptol. 5, 3–28 (1992).

    Google Scholar 

  • Xiao, M., Wu, L.-A. & Kimble, H. J. Precision measurement beyond the shot-noise limit. Phys. Rev. Lett. 59, 278–281 (1987).

    CAS 
    PubMed 

    Google Scholar 

  • Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    CAS 

    Google Scholar 

  • Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • O’Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-not gate. Nature 426, 264–267 (2003).

    PubMed 

    Google Scholar 

  • Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Pan, J.-W., Gasparoni, S., Ursin, R., Weihs, G. & Zeilinger, A. Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    CAS 

    Google Scholar 

  • Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    Google Scholar 

  • Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012).

    Google Scholar 

  • Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–695 (1977).

    CAS 

    Google Scholar 

  • Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, X.-L. et al. Experimental ten-photon entanglement. Phys. Rev. Lett. 117, 210502 (2016).

    PubMed 

    Google Scholar 

  • Mosley, P. J. et al. Heralded generation of ultrafast single photons in pure quantum states. Phys. Rev. Lett. 100, 133601 (2008).

    PubMed 

    Google Scholar 

  • Takeuchi, S. Beamlike twin-photon generation by use of type II parametric downconversion. Opt. Lett. 26, 843–845 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Zhong, H.-S. et al. 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett. 121, 250505 (2018).

    PubMed 

    Google Scholar 

  • Silverstone, J. W. et al. On-chip quantum interference between silicon photon-pair sources. Nat. Photon. 8, 104–108 (2014).

    CAS 

    Google Scholar 

  • Paesani, S. et al. Near-ideal spontaneous photon sources in silicon quantum photonics. Nat. Commun. 11, 2505 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pittman, T., Jacobs, B. & Franson, J. Single photons on pseudodemand from stored parametric down-conversion. Phys. Rev. A 66, 042303 (2002).

    Google Scholar 

  • Migdall, A. L., Branning, D. & Castelletto, S. Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A 66, 053805 (2002).

    Google Scholar 

  • Kaneda, F. & Kwiat, P. G. High-efficiency single-photon generation via large-scale active time multiplexing. Sci. Adv. 5, eaaw8586 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Najer, D. et al. A gated quantum dot strongly coupled to an optical microcavity. Nature 575, 622–627 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • He, Y.-M. et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol. 8, 213–217 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, H. et al. Towards optimal single-photon sources from polarized microcavities. Nat. Photon. 13, 770–775 (2019).

    CAS 

    Google Scholar 

  • Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Ding, X. et al. High-efficiency single-photon source above the loss-tolerant threshold for efficient linear optical quantum computing. Nat. Photon. 19, 387–391 (2025).

    CAS 

    Google Scholar 

  • Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).

    CAS 

    Google Scholar 

  • Zhai, L. et al. Quantum interference of identical photons from remote GaAs quantum dots. Nat. Nanotechnol. 17, 829–833 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Lindner, N. H. & Rudolph, T. A photonic cluster state machine gun. Phys. Rev. Lett. 103, 113602 (2009).

    PubMed 

    Google Scholar 

  • Vahlbruch, H., Mehmet, M., Danzmann, K. & Schnabel, R. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys. Rev. Lett. 117, 110801 (2016).

    PubMed 

    Google Scholar 

  • Dodd, J. L., Ralph, T. C. & Milburn, G. J. Experimental requirements for Grover’s algorithm in optical quantum computation. Phys. Rev. A 68, 042328 (2003).

    Google Scholar 

  • Procopio, L. M. et al. Experimental superposition of orders of quantum gates. Nat. Commun. 6, 7913 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weston, M. M. et al. Quantum channel correction outperforming direct transmission. Nat. Commun. 13, 1832 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Jin, R.-B. et al. Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength. Opt. Express 22, 11498–11507 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Marcikic, I. et al. Time-bin entangled qubits for quantum communication created by femtosecond pulses. Phys. Rev. A 66, 062308 (2002).

    Google Scholar 

  • Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P. & Diamanti, E. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photon. 7, 378–381 (2013).

    CAS 

    Google Scholar 

  • Xiong, C. et al. Active temporal multiplexing of indistinguishable heralded single photons. Nat. Commun. 7, 10853 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, H. et al. Boson sampling with 20 input photons in 60-mode interferometers at 1014 state spaces. Phys. Rev. Lett. 123, 250503 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).

    CAS 

    Google Scholar 

  • Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2022).

    Google Scholar 

  • Jeffrey, T. & Hull, D. Integrated Photonics (OP-TEC, Univ. Central Florida, 2016)

  • Silverstone, J. W., Bonneau, D., O’Brien, J. L. & Thompson, M. G. Silicon quantum photonics. IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).

    Google Scholar 

  • Roeloffzen, C. G. H. et al. Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview. IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).

    Google Scholar 

  • Dietrich, C. P., Fiore, A., Thompson, M. G., Kamp, M. & Höfling, S. GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits. Laser Photonics Rev. 10, 870–894 (2016).

    CAS 

    Google Scholar 

  • Lukin, D. M., Guidry, M. A. & Vuckovic, J. Integrated quantum photonics with silicon carbide: challenges and prospects. PRX Quantum 1, 020102 (2020).

    Google Scholar 

  • Meany, T. et al. Laser written circuits for quantum photonics. Laser Photonics Rev. 9, 363–384 (2015).

    CAS 

    Google Scholar 

  • Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics 13, 242–352 (2021).

    Google Scholar 

  • Gol’tsman, G. N. et al. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705–707 (2001).

    Google Scholar 

  • Rosfjord, K. M. et al. Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating. Opt. Express 14, 527–534 (2001).

    Google Scholar 

  • Reddy, D. V., Nerem, R. R., Nam, S. W., Mirin, R. P. & Verma, V. B. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm. Optica 7, 1649–1653 (2020).

    Google Scholar 

  • Korzh, B. et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photon. 14, 250–255 (2020).

    CAS 

    Google Scholar 

  • Andrews, D. H., Brucksch, W. F. Jr., Ziegler, W. T. & Blanchard, E. R. Attenuated superconductors I. For measuring infra-red radiation. Rev. Sci. Instrum. 13, 281–292 (1942).

    Google Scholar 

  • Lita, A. E., Miller, A. J. & Nam, S. W. Counting near-infrared single-photons with 95% efficiency. Opt. Express 16, 3032–3040 (2008).

    PubMed 

    Google Scholar 

  • Schuck, C., Pernice, W. H. P. & Tang, H. X. Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate. Sci. Rep. 3, 1893 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sahin, D. et al. Waveguide photon-number-resolving detectors for quantum photonic integrated circuits. Appl. Phys. Lett. 103, 111116 (2013).

    Google Scholar 

  • Höpker, J. P. et al. Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides. APL Photonics 4, 056103 (2019).

    Google Scholar 

  • Pernice, W. H. P. et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Cheng, R. et al. A 100-pixel photon-number-resolving detector unveiling photon statistics. Nat. Photon. 17, 112–119 (2023).

    CAS 

    Google Scholar 

  • Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. In International Conference on Computers, Systems & Signal Processing 175–179 (Theoretical Computer Science, 1984).

  • Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • Bennett, C. H. & Brassard, G. Experimental quantum cryptography: the dawn of a new era for quantum cryptography: the experimental prototype is working. ACM SIGACT News 20, 78–80 (1989).

    Google Scholar 

  • Wang, X.-B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005).

    PubMed 

    Google Scholar 

  • Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).

    PubMed 

    Google Scholar 

  • Boaron, A. et al. Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121, 190502 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, Y.-A. et al. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 589, 214–219 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Lo, H.-K., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012).

    PubMed 

    Google Scholar 

  • Yin, H.-L. et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016).

    PubMed 

    Google Scholar 

  • Lucamarini, M., Yuan, Z. L., Dynes, J. F. & Shields, A. J. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, S. et al. Twin-field quantum key distribution over 830-km fibre. Nat. Photon. 16, 154–161 (2022).

    Google Scholar 

  • Chen, J.-P. et al. Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nat. Photon. 15, 570–575 (2021).

    CAS 

    Google Scholar 

  • Pittaluga, M. et al. Long-distance coherent quantum communications in deployed telecom networks. Nature 640, 911–917 (2025).

    CAS 
    PubMed 

    Google Scholar 

  • Grosshans, F. & Grangier, P. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002).

    PubMed 

    Google Scholar 

  • Weedbrook, C. et al. Quantum cryptography without switching. Phys. Rev. Lett. 93, 170504 (2004).

    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Long-distance continuous-variable quantum key distribution over 202.81 km of fiber. Phys. Rev. Lett. 125, 010502 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802–803 (1982).

    CAS 

    Google Scholar 

  • Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    CAS 

    Google Scholar 

  • Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Pan, J.-W., Bouwmeester, D., Weinfurter, H. & Zeilinger, A. Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998).

    CAS 

    Google Scholar 

  • Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Yu, Y. et al. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature 578, 240–245 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, J.-L. et al. Creation of memory–memory entanglement in a metropolitan quantum network. Nature 629, 579–585 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Knaut, C. M. et al. Entanglement of nanophotonic quantum memory nodes in a telecom network. Nature 629, 573–578 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stolk, A. J. et al. Metropolitan-scale heralded entanglement of solid-state qubits. Sci. Adv. 10, eadp6442 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liao, S.-K. et al. Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Yin, J. et al. Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature 582, 501–505 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Ren, J.-G. et al. Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Lu, C.-Y., Browne, D. E., Yang, T. & Pan, J.-W. Demonstration of a compiled version of Shor’s quantum factoring algorithm using photonic qubits. Phys. Rev. Lett. 99, 250504 (2007).

    PubMed 

    Google Scholar 

  • Lanyon, B. P. et al. Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement. Phys. Rev. Lett. 99, 250505 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Milburn, G. J. A quantum Fredkin gate. Phys. Rev. Lett. 62, 2124–2127 (1989).

    CAS 
    PubMed 

    Google Scholar 

  • Nielsen, M. A. Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004).

    PubMed 

    Google Scholar 

  • Dawson, C. M., Haselgrove, H. L. & Nielsen, M. A. Noise thresholds for optical quantum computers. Phys. Rev. Lett. 96, 020501 (2006).

    PubMed 

    Google Scholar 

  • Rudolph, T. Why I am optimistic about the silicon-photonic route to quantum computing. APL Photonics 2, 030901 (2017).

    Google Scholar 

  • Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Qiang, X. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539 (2018).

    CAS 

    Google Scholar 

  • Mennea, P. et al. Modular linear optical circuits. Optica 5, 1087–1094 (2018).

    CAS 

    Google Scholar 

  • Meyer-Scott, E. et al. Scalable generation of multiphoton entangled states by active feed-forward and multiplexing. Phys. Rev. Lett. 129, 150501 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Schön, C., Solano, E., Verstraete, F., Cirac, J. I. & Wolf, M. M. Sequential generation of entangled multiqubit states. Phys. Rev. Lett. 95, 110503 (2005).

    PubMed 

    Google Scholar 

  • Economou, S. E., Lindner, N. H. & Rudolph, T. Optically generated 2-dimensional photonic cluster state from coupled quantum dots. Phys. Rev. Lett. 105, 093601 (2010).

    PubMed 

    Google Scholar 

  • Gimeno-Segovia, M., Rudolph, T. & Economou, S. E. Deterministic generation of large-scale entangled photonic cluster state from interacting solid state emitters. Phys. Rev. Lett. 123, 070501 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Schwartz, I. et al. Deterministic generation of a cluster state of entangled photons. Science 354, 434–437 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Cogan, D., Su, Z.-E., Kenneth, O. & Gershoni, D. Deterministic generation of indistinguishable photons in a cluster state. Nat. Photon. 17, 324–329 (2023).

    CAS 

    Google Scholar 

  • Coste, N. et al. High-rate entanglement between a semiconductor spin and indistinguishable photons. Nat. Photon. 17, 582–587 (2023).

    CAS 

    Google Scholar 

  • Yang, C.-W. et al. Highly efficient multiphoton generation with photon-number-resolving detectors. Nat. Photon. 16, 658–661 (2022).

    CAS 

    Google Scholar 

  • Thomas, P., Ruscio, L., Morin, O. & Rempe, G. Efficient generation of entangled multiphoton graph states from a single atom. Nature 608, 677–681 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thomas, P., Ruscio, L., Morin, O. & Rempe, G. Fusion of deterministically generated photonic graph states. Nature 629, 567–572 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hacker, B., Welte, S., Rempe, G. & Ritter, S. A photon–photon quantum gate based on a single atom in an optical resonator. Nature 536, 193–196 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Hastrup, J. & Andersen, U. L. Protocol for generating optical Gottesman–Kitaev–Preskill states with cavity QED. Phys. Rev. Lett. 128, 170503 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Menicucci, N. C. et al. Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett. 97, 110501 (2006).

    PubMed 

    Google Scholar 

  • Menicucci, N. C. Fault-tolerant measurement-based quantum computing with continuous-variable cluster states. Phys. Rev. Lett. 112, 120504 (2014).

    PubMed 

    Google Scholar 

  • Menicucci, N. C., Ma, X. & Ralph, T. C. Arbitrarily large continuous-variable cluster states from a single quantum nondemolition gate. Phys. Rev. Lett. 104, 250503 (2010).

    PubMed 

    Google Scholar 

  • Yokoyama, S. et al. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nat. Photon. 7, 982–986 (2013).

    CAS 

    Google Scholar 

  • Asavanant, W. et al. Generation of time-domain-multiplexed two-dimensional cluster state. Science 366, 373–376 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Larsen, M. V., Guo, X., Breum, C. R., Neergaard-Nielsen, J. S. & Andersen, U. L. Deterministic generation of a two-dimensional cluster state. Science 366, 369–372 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Larsen, M. V., Guo, X., Breum, C. R., Neergaard-Nielsen, J. S. & Andersen, U. L. Deterministic multi-mode gates on a scalable photonic quantum computing platform. Nat. Phys. 17, 1018–1023 (2021).

    CAS 

    Google Scholar 

  • Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).

    Google Scholar 

  • Konno, S. et al. Logical states for fault-tolerant quantum computation with propagating light. Science 383, 289–293 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R. & Grangier, P. Generation of optical ‘Schrödinger’ cats from photon number states. Nature 448, 784–786 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. Theory Comput. 9, 143–252 (2013).

    Google Scholar 

  • Lund, A. et al. Boson sampling from a Gaussian state. Phys. Rev. Lett. 113, 100502 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Hamilton, C. S. et al. Gaussian boson sampling. Phys. Rev. Lett. 119, 170501 (2017).

    PubMed 

    Google Scholar 

  • Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Crespi, A. et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photon. 7, 545–549 (2013).

    CAS 

    Google Scholar 

  • Tillmann, M. et al. Experimental boson sampling. Nat. Photon. 7, 540–544 (2013).

    CAS 

    Google Scholar 

  • Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photon. 11, 361–365 (2017).

    CAS 

    Google Scholar 

  • Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Zhong, H.-S. et al. Phase-programmable gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett. 127, 180502 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Deng, Y.-H. et al. Gaussian boson sampling with pseudo-photon-number resolving detectors and quantum computational advantage. Phys. Rev. Lett. 131, 150601 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).

    Google Scholar 

  • Abbott, R. et al. GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Phys. Rev. X 11, 021053 (2021).

    CAS 

    Google Scholar 

  • Abbott, R. et al. GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run. Phys. Rev. X 13, 041039 (2021).

    Google Scholar 

  • Lough, J. et al. First demonstration of 6 dB quantum noise reduction in a kilometer scale gravitational wave observatory. Phys. Rev. Lett. 126, 041102 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Cheng, J.-X. & Xie, X. S. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science 350, aaa8870 (2015).

    PubMed 

    Google Scholar 

  • Wei, L. et al. Super-multiplex vibrational imaging. Nature 544, 465–470 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Casacio, C. A. et al. Quantum-enhanced nonlinear microscopy. Nature 594, 201–206 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Weston, M. M. et al. Efficient and pure femtosecond-pulse-length source of polarization-entangled photons. Opt. Express 24, 10869–10879 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Kaneda, F., Garay-Palmett, K., U’Ren, A. B. & Kwiat, P. G. Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric down conversion. Opt. Express 24, 10733–10747 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Ma, X.-s., Zotter, S., Kofler, J., Jennewein, T. & Zeilinger, A. Experimental generation of single photons via active multiplexing. Phys. Rev. A 83, 043814 (2011).

    Google Scholar 

  • Kaneda, F. et al. Time-multiplexed heralded single-photon source. Optica 2, 1010–1013 (2015).

    CAS 

    Google Scholar 

  • Joshi, C., Farsi, A., Clemmen, S., Ramelow, S. & Gaeta, A. L. Frequency multiplexing for quasi-deterministic heralded single-photon sources. Nat. Commun. 9, 847 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ralph, T. C., Hayes, A. J. F. & Gilchrist, A. Loss-tolerant optical qubits. Phys. Rev. Lett. 95, 100501 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Ralph, T. C., Gilchrist, A., Milburn, G. J., Munro, W. J. & Glancy, S. Quantum computation with coherent optical states. Phys. Rev. A 68, 042319 (2003).

    Google Scholar 

  • Zurek, W. H. Sub-Planck structure in phase space and its relevance for quantum decoherence. Nature 412, 712–717 (2001).

    CAS 
    PubMed 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *