
Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996).
Google Scholar
Son, Y.-W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).
Google Scholar
Ding, Y., Wang, Y. & Ni, J. Electronic properties of graphene nanoribbons embedded in boron nitride sheets. Appl. Phys. Lett. 95, 123105 (2009).
Zeng, J. et al. Enhanced half-metallicity in orientationally misaligned graphene/hexagonal boron nitride lateral heterojunctions. Phys. Rev. B 94, 235425 (2016).
Li, H. B. et al. Unveiling nanoscale THz-STM imaging techniques on graphene nanoribbons with zigzag edge topology. Opt. Express 32, 32062–32078 (2024).
Google Scholar
Rizzo, D. J. et al. Topological band engineering of graphene nanoribbons. Nature 560, 204–208 (2018).
Google Scholar
Groning, O. et al. Engineering of robust topological quantum phases in graphene nanoribbons. Nature 560, 209–213 (2018).
Google Scholar
Cao, T., Zhao, F. Z. & Louie, S. G. Topological phases in graphene nanoribbons: junction states, spin centers, and quantum spin chains. Phys. Rev. Lett. 119, 076401 (2017).
Google Scholar
Rizzo, D. J. et al. Inducing metallicity in graphene nanoribbons via zero-mode superlattices. Science 369, 1597–1603 (2020).
Google Scholar
Wang, S. et al. Giant edge state splitting at atomically precise graphene zigzag edges. Nat. Commun. 7, 11507 (2016).
Google Scholar
Blackwell, R. E. et al. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons. Nature 600, 647–652 (2021).
Google Scholar
Brede, J. et al. Detecting the spin-polarization of edge states in graphene nanoribbons. Nat. Commun. 14, 6677 (2023).
Google Scholar
Wang, D. et al. Twisted bilayer zigzag-graphene nanoribbon junctions with tunable edge states. Nat. Commun. 14, 1018 (2023).
Google Scholar
Šćepanović, S. et al. Delocalized spin states at zigzag termini of armchair graphene nanoribbon. Sci. Rep. 14, 11641 (2024).
Google Scholar
Magda, G. Z. et al. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514, 608–611 (2014).
Google Scholar
Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).
Google Scholar
Wang, X. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008).
Google Scholar
Lu, X. et al. Graphene nanoribbons epitaxy on boron nitride. Appl. Phys. Lett. 108, 113103 (2016).
Wang, G. et al. Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching. Appl. Phys. Lett. 109, 053101 (2016).
Wu, S. et al. Magnetotransport properties of graphene nanoribbons with zigzag edges. Phys. Rev. Lett. 120, 216601 (2018).
Google Scholar
Lyu, B. et al. Catalytic growth of ultralong graphene nanoribbons on insulating substrates. Adv. Mater. 34, 2200956 (2022).
Google Scholar
Lyu, B. et al. Graphene nanoribbons grown in hBN stacks for high-performance electronics. Nature 628, 758–764 (2024).
Google Scholar
Wang, X. et al. N-doping of graphene through electrothermal reactions with ammonia. Science 324, 768–771 (2009).
Google Scholar
Jiang, D. E., Sumpter, B. G. & Dai, S. Unique chemical reactivity of a graphene nanoribbon’s zigzag edge. J. Chem. Phys. 126, 134701 (2007).
Google Scholar
Wang, X. & Dai, H. Etching and narrowing of graphene from the edges. Nat. Chem. 2, 661–665 (2010).
Google Scholar
Nikita, V. et al. Dirac half-semimetallicity and antiferromagnetism in graphene nanoribbon/hexagonal boron nitride heterojunctions. Nano Lett. 23, 6698–6704 (2023).
Chen, C. et al. Directional etching for high aspect ratio nano-trenches on hexagonal boron nitride by catalytic metal particles. 2D Mater. 9, 025015 (2022).
Google Scholar
Tang, S. et al. Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride. Nat. Commun. 6, 6499 (2015).
Google Scholar
Chen, L. et al. Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches. Nat. Commun. 8, 14703 (2017).
Google Scholar
Wang, H. S. et al. Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride. Nat. Mater. 20, 202–207 (2021).
Google Scholar
Singh, A. K. & Yakobson, B. I. Electronics and magnetism of patterned graphene nanoroads. Nano Lett. 9, 1540–1543 (2009).
Google Scholar
Lee, J.-H. & Grossman, J. C. Magnetic properties in graphene-graphane superlattices. Appl. Phys. Lett. 97, 133102 (2010).
Huang, L. F., Zheng, X. H., Zhang, G. R., Li, L. L. & Zeng, Z. Understanding the band gap, magnetism, and kinetics of graphene nanostripes in graphene. J. Phys. Chem. C 115, 21088 (2011).
Google Scholar
Kim, H.-J., Oh, S., Zeng, C. & Cho, J.-H. Peierls instability and spin orderings of ultranarrow graphene nanoribbons in graphene. J. Phys. Chem. C 116, 13795 (2012).
Google Scholar
Kim, S.-W., Kim, H.-J., Choi, J.-H., Scheicher, R. H. & Cho, J.-H. Contrasting interedge superexchange interactions of graphene nanoribbons embedded in h-BN and graphene. Phys. Rev. B 92, 035443 (2015).
Kan, E.-J., Li, Z., Yang, J. & Hou, J. G. Will zigzag graphene nanoribbon turn to half metal under electric field? Appl. Phys. Lett. 91, 243116 (2007).
Pruneda, J. M. Origin of half-semimetallicity induced at interfaces of C-BN heterostructures. Phys. Rev. B 81, 161409(R) (2010).
Casola, F., van der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 17088 (2018).
Google Scholar
Gross, I. et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).
Google Scholar
Dovzhenko, Y. et al. Magnetostatic twists in room-temperature skyrmions explored by nitrogen-vacancy center spin texture reconstruction. Nat. Commun. 9, 2712 (2018).
Google Scholar
Thiel, L. et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 364, 973–976 (2019).
Google Scholar
Taylor, J. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 4, 810–816 (2008).
Google Scholar
Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).
Google Scholar
Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 7, 320–324 (2012).
Google Scholar
Wang, X. et al. Weak localization in graphene sandwiched by aligned h-BN flakes. Nanotechnology 31, 215712 (2020).
Google Scholar
Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).
Google Scholar
Edwards, D. M. & Katsnelson, M. I. High-temperature ferromagnetism of sp electrons in narrow impurity bands. J. Phys. Condens. Matter 18, 7209–7225 (2006).
Google Scholar
Wang, W. L. et al. Graphene nanoflakes with large spin. Nano Lett. 8, 241–245 (2008).
Google Scholar
Kondorsky, E. On hysteresis in ferromagnetics. J. Phys. 2, 161–181 (1940).
Verzhbitskiy, I. A. et al. Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating. Nat. Electron. 3, 460–465 (2020).
Google Scholar
Pramanik, T. et al. Angular dependence of magnetization reversal in epitaxial chromium telluride thin films with perpendicular magnetic anisotropy. J. Magn. Magn. Mater. 437, 72–77 (2017).
Google Scholar
Li, J. et al. Magnetic anisotropy and high-frequency property of flexible FeCoTa films obliquely deposited on a wrinkled topography. Sci. Rep. 7, 2837 (2017).
Google Scholar
Avsar, A. et al. Defect induced layer-modulated magnetism in ultrathin metallic PtSe2. Nat. Nanotechnol. 14, 674–678 (2019).
Google Scholar
Groot, R. A. D., Mueller, F. M., Engen, P. G. V. & Buschow, K. H. J. New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024 (1983).
Hu, X. Half-metallic antiferromagnet as a prospective material for spintronics. Adv. Mater. 24, 294–298 (2012).
Google Scholar
Kim, G. et al. Blue emission at atomically sharp 1D heterojunctions between graphene and h-BN. Nat. Commun. 11, 5359 (2020).
Google Scholar
Murakami, S., Nagaosa, N. & Zhang, S.-C. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003).
Google Scholar
Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004).
Google Scholar
Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotechnol. 9, 794–807 (2014).
Google Scholar
Wang, H. et al. Graphene nanoribbons for quantum electronics. Nat. Rev. Phys. 3, 791–802 (2021).
Google Scholar
Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).
Google Scholar
Topsakal, M., Sevinçli, H. & Ciraci, S. Spin confinement in the superlattices of graphene ribbons. Appl. Phys. Lett. 92, 173118 (2008).
Wimmer, M., Adagideli, İ., Berber, S., Tománek, D. & Richter, K. Spin currents in rough graphene nanoribbons: universal fluctuations and spin injection. Phys. Rev. Lett. 100, 177207 (2008).
Google Scholar
Rondin, L. et al. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer. Appl. Phys. Lett. 100, 153118 (2012).
Chen, L. et al. Edge control of graphene domains grown on hexagonal boron nitride. Nanoscale 9, 11475–11479 (2017).
Google Scholar