• August 26, 2025
  • Live Match Score
  • 0


  • Li, G. et al. Two-dimensional Fermi surfaces in Kondo insulator SmB6. Science 346, 1208–1212 (2014).

    PubMed 
    CAS 

    Google Scholar 

  • Tan, B. S. et al. Unconventional Fermi surface in an insulating state. Science 349, 287–290 (2015).

    PubMed 
    CAS 

    Google Scholar 

  • Hartstein, M. et al. Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB6. Nat. Phys. 14, 166–172 (2018).

    CAS 

    Google Scholar 

  • Liu, H. et al. Fermi surfaces in Kondo insulators. J. Phys. Condens. Matter 30, 16LT01 (2018).

    PubMed 

    Google Scholar 

  • Xiang, Z. et al. Quantum oscillations of electrical resistivity in an insulator. Science 362, 65–69 (2018).

    PubMed 
    CAS 

    Google Scholar 

  • Han, Z., Li, T., Zhang, L., Sullivan, G. & Du, R.-R. Anomalous conductance oscillations in the hybridization gap of InAs/GaSb quantum wells. Phys. Rev. Lett. 123, 126803 (2019).

    PubMed 
    CAS 

    Google Scholar 

  • Xiao, D., Liu, C.-X., Samarth, N. & Hu, L.-H. Anomalous quantum oscillations of interacting electron-hole gases in inverted type-II InAs/GaSb quantum wells. Phys. Rev. Lett. 122, 186802 (2019).

    PubMed 
    CAS 

    Google Scholar 

  • Wang, R., Sedrakyan, T. A., Wang, B., Du, L. & Du, R.-R. Excitonic topological order in imbalanced electron–hole bilayers. Nature 619, 57–62 (2023).

    PubMed 
    CAS 

    Google Scholar 

  • Wang, P. et al. Landau quantization and highly mobile fermions in an insulator. Nature 589, 225–229 (2021).

    PubMed 
    CAS 

    Google Scholar 

  • Zhu, J., Li, T., Young, A. F., Shan, J. & Mak, K. F. Quantum oscillations in two-dimensional insulators induced by graphite gates. Phys. Rev. Lett. 127, 247702 (2021).

    PubMed 
    CAS 

    Google Scholar 

  • Knolle, J. & Cooper, N. R. Quantum oscillations without a Fermi surface and the anomalous de Haas–van Alphen effect. Phys. Rev. Lett. 115, 146401 (2015).

    PubMed 

    Google Scholar 

  • Erten, O., Ghaemi, P. & Coleman, P. Kondo breakdown and quantum oscillations in SmB6. Phys. Rev. Lett. 116, 046403 (2016).

    PubMed 

    Google Scholar 

  • Zhang, L., Song, X.-Y. & Wang, F. Quantum oscillation in narrow-gap topological insulators. Phys. Rev. Lett. 116, 046404 (2016).

    PubMed 

    Google Scholar 

  • Pal, H. K., Piéchon, F., Fuchs, J.-N., Goerbig, M. & Montambaux, G. Chemical potential asymmetry and quantum oscillations in insulators. Phys. Rev. B 94, 125140 (2016).

    Google Scholar 

  • Shen, H. & Fu, L. Quantum oscillation from in-gap states and a non-Hermitian Landau level problem. Phys. Rev. Lett. 121, 026403 (2018).

    PubMed 
    CAS 

    Google Scholar 

  • Lee, P. A. Quantum oscillations in the activated conductivity in excitonic insulators: possible application to monolayer WTe2. Phys. Rev. B 103, L041101 (2021).

    CAS 

    Google Scholar 

  • He, W.-Y. & Lee, P. A. Quantum oscillation of thermally activated conductivity in a monolayer WTe2-like excitonic insulator. Phys. Rev. B 104, L041110 (2021).

    CAS 

    Google Scholar 

  • Allocca, A. A. & Cooper, N. R. Quantum oscillations of magnetization in interaction-driven insulators. SciPost Phys. 12, 123 (2022).

    Google Scholar 

  • Allocca, A. A. & Cooper, N. R. Fluctuation-dominated quantum oscillations in excitonic insulators. Phys. Rev. Res. 6, 033199 (2024).

    CAS 

    Google Scholar 

  • Zyuzin, V. A. de Haas–van Alphen effect and quantum oscillations as a function of temperature in correlated insulators. Phys. Rev. B 109, 235111 (2024).

    CAS 

    Google Scholar 

  • Zou, B., Zeng, Y., MacDonald, A. H. & Strashko, A. Electrical control of two-dimensional electron-hole fluids in the quantum Hall regime. Phys. Rev. B 109, 085416 (2024).

    CAS 

    Google Scholar 

  • Shao, Y. & Dai, X. Quantum oscillations in an excitonic insulating electron-hole bilayer. Phys. Rev. B 109, 155107 (2024).

    CAS 

    Google Scholar 

  • Sodemann, I., Chowdhury, D. & Senthil, T. Quantum oscillations in insulators with neutral Fermi surfaces. Phys. Rev. B 97, 045152 (2018).

    CAS 

    Google Scholar 

  • Chowdhury, D., Sodemann, I. & Senthil, T. Mixed-valence insulators with neutral Fermi surfaces. Nat. Commun. 9, 1766 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Burg, G. W. et al. Strongly enhanced tunneling at total charge neutrality in double-bilayer graphene-WSe2 heterostructures. Phys. Rev. Lett. 120, 177702 (2018).

    PubMed 
    CAS 

    Google Scholar 

  • Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).

    PubMed 
    CAS 

    Google Scholar 

  • Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).

    PubMed 
    CAS 

    Google Scholar 

  • Qi, R. et al. Thermodynamic behavior of correlated electron-hole fluids in van der Waals heterostructures. Nat. Commun. 14, 8264 (2023).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Nguyen, P. X. et al. Perfect Coulomb drag in a dipolar excitonic insulator. Science 388, 274–278 (2025).

    PubMed 
    CAS 

    Google Scholar 

  • Qi, R. et al. Perfect Coulomb drag and exciton transport in an excitonic insulator. Science 388, 278–283 (2025).

    PubMed 
    CAS 

    Google Scholar 

  • Qi, R. et al. Electrically controlled interlayer trion fluid in electron-hole bilayers. Preprint at https://arxiv.org/abs/2312.03251 (2023).

  • Nguyen, P. X. et al. A degenerate trion liquid in atomic double layers. Preprint at https://arxiv.org/abs/2312.12571 (2023).

  • Du, L. et al. Evidence for a topological excitonic insulator in InAs/GaSb bilayers. Nat. Commun. 8, 1971 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, Z., Li, T., Zhang, L. & Du, R.-R. Magneto-induced topological phase transition in inverted InAs/GaSb bilayers. Phys. Rev. Res. 6, 023192 (2024).

    CAS 

    Google Scholar 

  • Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).

    PubMed 
    CAS 

    Google Scholar 

  • Wu, F.-C., Xue, F. & MacDonald, A. H. Theory of two-dimensional spatially indirect equilibrium exciton condensates. Phys. Rev. B 92, 165121 (2015).

    Google Scholar 

  • Xie, M. & MacDonald, A. H. Electrical reservoirs for bilayer excitons. Phys. Rev. Lett. 121, 067702 (2018).

    PubMed 
    CAS 

    Google Scholar 

  • Zeng, Y. & MacDonald, A. H. Electrically controlled two-dimensional electron-hole fluids. Phys. Rev. B 102, 085154 (2020).

    CAS 

    Google Scholar 

  • Eisenstein, J. P. & MacDonald, A. H. Bose–Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004).

    PubMed 
    CAS 

    Google Scholar 

  • Tiemann, L. et al. Exciton condensate at a total filling factor of one in Corbino two-dimensional electron bilayers. Phys. Rev. B 77, 033306 (2008).

    Google Scholar 

  • Nandi, D., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Exciton condensation and perfect Coulomb drag. Nature 488, 481–484 (2012).

    PubMed 
    CAS 

    Google Scholar 

  • Liu, X., Watanabe, K., Taniguchi, T., Halperin, B. I. & Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746–750 (2017).

    CAS 

    Google Scholar 

  • Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751–755 (2017).

    CAS 

    Google Scholar 

  • Stier, A. V. et al. Magnetooptics of exciton Rydberg states in a monolayer semiconductor. Phys. Rev. Lett. 120, 057405 (2018).

    PubMed 
    CAS 

    Google Scholar 

  • Nagler, P. et al. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nat. Commun. 8, 1551 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vu, D. & Das Sarma, S. Excitonic phases in a spatially separated electron-hole ladder model. Phys. Rev. B 108, 235158 (2023).

    CAS 

    Google Scholar 

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    PubMed 
    CAS 

    Google Scholar 

  • Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    PubMed 
    CAS 

    Google Scholar 

  • Ashoori, R. C. et al. Single-electron capacitance spectroscopy of discrete quantum levels. Phys. Rev. Lett. 68, 3088–3091 (1992).

    PubMed 
    CAS 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *