• August 28, 2025
  • Live Match Score
  • 0


  • Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).

    Google Scholar 

  • Youngblood, N., Chen, C., Koester, S. J. & Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photon. 9, 247–252 (2015).

    Google Scholar 

  • Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Google Scholar 

  • Das, S. et al. Tunable transport gap in phosphorene. Nano Lett. 14, 5733–5739 (2014).

    Google Scholar 

  • Sorkin, V. et al. Recent advances in the study of phosphorene and its nanostructures. Crit. Rev. Solid State Mat. Sci. 42, 1–82 (2016).

    Google Scholar 

  • Sisakht, E. T., Fazileh, F., Zare, M. H., Zarenia, M. & Peeters, F. M. Strain-induced topological phase transition in phosphorene and in phosphorene nanoribbons. Phys. Rev. B 94, 085417 (2016).

    Google Scholar 

  • Poljak, M. & Suligoj, T. Immunity of electronic and transport properties of phosphorene nanoribbons to edge defects. Nano Res. 9, 1723–1734 (2016).

    Google Scholar 

  • Peng, X. & Chen, K. Comparison on thermal transport properties of graphene and phosphorene nanoribbons. Sci. Rep. 5, 16215 (2015).

    Google Scholar 

  • Feng, X. et al. High mobility anisotropic black phosphorus nanoribbon field-effect transistor. Adv. Funct. Mater. 28, 1801524 (2018).

    Google Scholar 

  • Zhang, J. et al. Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Sci. Rep. 4, 6452 (2014).

    Google Scholar 

  • Sarvari, H. et al. Atomistic quantum transport simulation of multilayer phosphorene nanoribbon field effect transistors. Phys. E 91, 161–168 (2017).

    Google Scholar 

  • Peng, X., Copple, A. & Wei, Q. Edge effects on the electronic properties of phosphorene nanoribbons. J. Appl. Phys. 116, 144301 (2014).

    Google Scholar 

  • Xie, F. et al. Tuning of the electronic and transport properties of phosphorene nanoribbons by edge types and edge defects. Org. Electron. 42, 21–27 (2017).

    Google Scholar 

  • Zhu, Z. et al. Magnetism of zigzag edge phosphorene nanoribbons. Appl. Phys. Lett. 105, 113105 (2014).

    Google Scholar 

  • Xiao, J. et al. First-principles prediction of the charge mobility in black phosphorus semiconductor nanoribbons. J. Phys. Chem. Lett. 6, 4141–4147 (2015).

    Google Scholar 

  • Liu, Y., Feng, X., Qin, Y. & Wang, Q. Width dependent two-photon absorption in monolayer black phosphorus nanoribbons. Appl. Sci. 9, 2014 (2019).

    Google Scholar 

  • Fei, R. et al. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett. 14, 6393–6399 (2014).

    Google Scholar 

  • Masih et al. Controlled sculpture of black phosphorus nanoribbons. ACS Nano 10, 5687–5695 (2016).

    Google Scholar 

  • Macewicz, L., Pyrchla, K., Bogdanowicz, R., Sumanasekera, G. & Jasinski, J. B. Chemical vapor transport route toward black phosphorus nanobelts and nanoribbons. J. Phys. Chem. Lett. 12, 8347–8354 (2021).

    Google Scholar 

  • Watts, M. C. et al. Production of phosphorene nanoribbons. Nature 568, 216–220 (2019).

    Google Scholar 

  • Clancy, A. J. et al. Charged carbon nanomaterials: redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chem. Rev. 118, 7363–7408 (2018).

    Google Scholar 

  • Cano-MáRquez, A. G. et al. Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 9, 1527–1533 (2009).

    Google Scholar 

  • Jiao, L. Y., Wang, X. R., Diankov, G., Wang, H. L. & Dai, H. Facile synthesis of high quality graphene nanoribbons. Nat. Nanotechnol. 5, 321–325 (2010).

    Google Scholar 

  • Abellán, G. et al. Exploring the formation of black phosphorus intercalation compounds with alkali metals. Angew. Chem. Int. Ed. 56, 15267–15273 (2017).

    Google Scholar 

  • Lee, Y. et al. Atomic-scale imaging of few-layer black phosphorus and its reconstructed edge. J. Phys. D 50, 084003 (2017).

    Google Scholar 

  • Zhao, W. et al. Large-scale, highly efficient, and green liquid-exfoliation of black phosphorus in ionic liquids. ACS Appl. Mater. Interfaces 7, 27608–27612 (2015).

    Google Scholar 

  • Yasaei, P. et al. High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 27, 1887–1892 (2015).

    Google Scholar 

  • Jia, C. et al. Surface coordination modification and electrical properties of few-layer black phosphorus exfoliated by the liquid-phase method. J. Alloys Compd. 799, 99–107 (2019).

    Google Scholar 

  • Wu, F., Xie, A., Sun, M., Jiang, W. & Zhang, K. Few-layer black phosphorus: a bright future in electromagnetic absorption. Mater. Lett. 193, 30–33 (2017).

    Google Scholar 

  • Luo, F. et al. Ultrafast cathodic exfoliation of few-layer black phosphorus in aqueous solution. ACS Appl. Nano Mater. 2, 3793–3801 (2019).

    Google Scholar 

  • Liu, N., Hong, J. W., Pidaparti, R. & Wang, X. Q. Fracture patterns and the energy release rate of phosphorene. Nanoscale 8, 5728–5736 (2016).

    Google Scholar 

  • Seo, S. et al. Triangular black phosphorus atomic layers by liquid exfoliation. Sci. Rep. 6, 23736 (2016).

    Google Scholar 

  • Tan, C. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).

    Google Scholar 

  • Sha, Z. D., Pei, Q. X., Ding, Z., Jiang, J. W. & Zhang, Y. W. Mechanical properties and fracture behavior of single-layer phosphorene at finite temperatures. J. Phys. D 48, 395303 (2015).

    Google Scholar 

  • Jiang, J. W. Parametrization of Stillinger–Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus. Nanotechnology 26, 315706 (2015).

    Google Scholar 

  • Sha, Z. D., Pei, Q. X., Zhang, Y. Y. & Zhang, Y. W. Atomic vacancies significantly degrade the mechanical properties of phosphorene. Nanotechnology 27, 315704 (2016).

    Google Scholar 

  • Köpf, M. et al. Access and in situ growth of phosphorene-precursor black phosphorus. J. Cryst. Growth 405, 6–10 (2014).

    Google Scholar 

  • Favron, A. et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015).

    Google Scholar 

  • Chen, C. et al. Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes. Nat. Electron. 4, 653–663 (2021).

    Google Scholar 

  • Du, Y., Liu, H., Deng, Y. & Ye, P. D. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. ACS Nano 8, 10035–10042 (2014).

    Google Scholar 

  • Koenig, S. P., Doganov, R. A., Schmidt, H., Neto, A. H. C. & Özyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014).

    Google Scholar 

  • Park, H. & Kim, J. Enhancing ambipolar carrier transport of black phosphorus field-effect transistors with Ni–P alloy contacts. Phys. Chem. Chem. Phys. 20, 22439–22444 (2018).

    Google Scholar 

  • Avsar, A. et al. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 9, 4138–4145 (2015).

    Google Scholar 

  • Liu, Z. et al. Unzipping of black phosphorus to form zigzag-phosphorene nanobelts. Nat. Commun. 11, 3917 (2020).

    Google Scholar 

  • Wan, B. et al. Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation. Nanotechnology 26, 435702 (2015).

    Google Scholar 

  • Buscema, M. et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347–3352 (2014).

    Google Scholar 

  • Huang, L. et al. Infrared black phosphorus phototransistor with tunable responsivity and low noise equivalent power. ACS Appl. Mater. Interfaces 9, 36130–36136 (2017).

    Google Scholar 

  • Liu, S. et al. Thickness-dependent Raman spectra, transport properties and infrared photoresponse of few-layer black phosphorus. J. Mater. Chem. C 3, 10974–10980 (2015).

    Google Scholar 

  • Chen, C. et al. Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics. Nano Lett. 17, 985–991 (2017).

    Google Scholar 

  • Xing, B. et al. Surface charge transfer doping and effective passivation of black phosphorus field effect transistors. J. Mater. Chem. C 8, 6595–6604 (2020).

    Google Scholar 

  • Xiang, D. et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun. 6, 6485 (2015).

    Google Scholar 

  • Tan, S. et al. Quasi-monolayer black phosphorus with high mobility and air stability. Adv. Mater. 30, 1704619 (2018).

    Google Scholar 

  • Xia, F. et al. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).

    Google Scholar 

  • Liu, N. et al. Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation. ACS Nano 8, 6902–6910 (2014).

    Google Scholar 

  • Yin, Z. et al. Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2012).

    Google Scholar 

  • Fang, T., Konar, A., Xing, H. & Jena, D. Mobility in semiconducting graphene nanoribbons: phonon, impurity, and edge roughness scattering. Phys. Rev. B 78, 205403 (2008).

    Google Scholar 

  • Chen, C. et al. Graphene nanoribbons under mechanical strain. Adv. Mater. 27, 303–309 (2015).

    Google Scholar 

  • Chen, X. et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun. 6, 7315 (2015).

    Google Scholar 

  • Yu, X. et al. A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO2. Nanoscale 8, 327–332 (2016).

    Google Scholar 

  • Qiu, C. et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355, 271–276 (2017).

    Google Scholar 

  • Gong, F. et al. Black phosphorus infrared photodetectors with fast response and high photoresponsivity. Phys. Status Solidi RRL 12, 1800310 (2018).

    Google Scholar 

  • Hou, C. et al. Multilayer black phosphorus near-infrared photodetectors. Sensors 18, 1668 (2018).

    Google Scholar 

  • Liu, Y. D., Cai, Y. Q., Zhang, G., Zhang, Y. M. & Ang, K. W. Al-doped black phosphorus p–n homojunction diode for high performance photovoltaic. Adv. Funct. Mater. 27, 1604638 (2017).

    Google Scholar 

  • Ling, Z. et al. Large-scale two-dimensional MoS2 photodetectors by magnetron sputtering. Opt. Express 23, 13580–13586 (2015).

    Google Scholar 

  • Huang, H. et al. Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology 27, 445201 (2016).

    Google Scholar 

  • Zeng, Q. et al. Carbon nanotube arrays based high-performance infrared photodetector. Opt. Mater. Express 2, 839–848 (2012).

    Google Scholar 

  • Ye, L., Li, H., Chen, Z. F. & Xu, J. B. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 3, 692–699 (2016).

    Google Scholar 

  • Ye, L. et al. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy 37, 53–60 (2017).

    Google Scholar 

  • Zhang, T. et al. Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction. Sci. Rep. 6, 38569 (2017).

    Google Scholar 

  • Yu, W. et al. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility. Small 13, 1700268 (2017).

    Google Scholar 

  • Guo, T. et al. High-gain MoS2/Ta2NiSe5 heterojunction photodetectors with charge transfer and suppressing dark current. ACS Appl. Mater. Interfaces 14, 56384–56394 (2022).

    Google Scholar 

  • Dhanabalan, S. C., Ponraj, J. S., Zhang, H. & Bao, Q. Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials. Nanoscale 8, 6410–6434 (2016).

    Google Scholar 

  • Guo, Q. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 16, 4648–4655 (2016).

    Google Scholar 

  • Chen, Z. et al. A stage-by-stage phase-induction and nucleation of black phosphorus from red phosphorus under low-pressure mineralization. CrystEngComm 19, 7207–7212 (2017).

    Google Scholar 

  • Barthel, J. Dr. Probe: a software for high-resolution STEM image simulation. Ultramicroscopy 193, 1–11 (2018).

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *