• September 1, 2025
  • Live Match Score
  • 0


  • Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R. & Anderson, D. G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 40, 840–854 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Miao, L. et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat. Biotechnol. 37, 1174–1185 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, C. et al. mRNA-based cancer therapeutics. Nat. Rev. Cancer 23, 526–543 (2023).

    PubMed 

    Google Scholar 

  • Rohner, E., Yang, R., Foo, K. S., Goedel, A. & Chien, K. R. Unlocking the promise of mRNA therapeutics. Nat. Biotechnol. 40, 1586–1600 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Chabanovska, O., Galow, A. M., David, R. & Lemcke, H. mRNA—a game changer in regenerative medicine, cell-based therapy and reprogramming strategies. Adv. Drug Deliv. Rev. 179, 114002 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hou, X. C., Zaks, T., Langer, R. & Dong, Y. Z. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 7, 65–65 (2022).

    Google Scholar 

  • Huang, X. G. et al. Nanotechnology-based strategies against SARS-CoV-2 variants. Nat. Nanotechnol. 17, 1027–1037 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Dahlman, J. E. & Loughrey, D. Non-liver mRNA delivery. Acc. Chem. Res. 55, 13–23 (2022).

    PubMed 

    Google Scholar 

  • Dilliard, S. A. & Siegwart, D. J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat. Rev. Mater. 8, 282–300 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 15, 313–316 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qiu, M. et al. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proc. Natl Acad. Sci. USA 119, e2116271119 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Riley, R. S. et al. Ionizable lipid nanoparticles for in utero mRNA delivery. Sci. Adv. 7, eaba10 (2021).

    Google Scholar 

  • Mitchell, M. J. et al. Ionizable lipid nanoparticles for in vivo mRNA Delivery to the placenta during pregnancy. J. Am. Chem. Soc. 145, 4691–4706 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing. Nat. Mater. 20, 701–710 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Poon, W., Kingston, B. R., Ouyang, B., Ngo, W. & Chan, W. C. W. A framework for designing delivery systems. Nat. Nanotechnol. 15, 819–829 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Kedmi, R. et al. A modular platform for targeted RNAi therapeutics. Nat. Nanotechnol. 13, 214–219 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, J. J. et al. Identification of potent antimicrobial peptides via a machine-learning pipeline that mines the entire space of peptide sequences. Nat. Biomed. Eng. 7, 797–810 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Xie, J. et al. Cell-penetrating peptides in diagnosis and treatment of human diseases: from preclinical research to clinical application. Front. Pharmacol. 11, 697 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fosgerau, K. & Hoffmann, T. Peptide therapeutics: current status and future directions. Drug Discov. Today 20, 122–128 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Foss, D. V. et al. Peptide-mediated delivery of CRISPR enzymes for the efficient editing of primary human lymphocytes. Nat. Biomed. Eng. 7, 647–660 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Z. et al. Efficient engineering of human and mouse primary cells using peptide-assisted genome editing. Nat. Biotechnol. 42, 305–315 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rhym, L. H., Manan, R. S., Koller, A., Stephanie, G. & Anderson, D. G. Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA delivery. Nat. Biomed. Eng. 7, 901–910 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Rossler, S. L., Grob, N. M., Buchwald, S. L. & Pentelute, B. L. Abiotic peptides as carriers of information for the encoding of small-molecule library synthesis. Science 379, eadf1354 (2023).

    Google Scholar 

  • Huang, W. M. et al. Maleimide-thiol adducts stabilized through stretching. Nat. Chem. 11, 310–319 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Stroock, A. et al. Chaotic mixer for microchannels. Science 295, 647–651 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Li, S. D. & Huang, L. Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J. Control. Release 145, 178–181 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, S. et al. The role of protein corona on nanodrugs for organ-targeting and its prospects of application. J. Control. Release 360, 15–43 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Oh, J. Y. et al. Cloaking nanoparticles with protein corona shield for targeted drug delivery. Nat. Commun. 9, 4548 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bashiri, G. et al. Nanoparticle protein corona: from structure and function to therapeutic targeting. Lab Chip 23, 1432–1466 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ngo, W. et al. Identifying cell receptors for the nanoparticle protein corona using genome screens. Nat. Chem. Biol. 18, 1023–1031 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Singh, B., Fu, C. & Bhattacharya, J. Vascular expression of the αvβ3-integrin in lung and other organs. Am. J. Physiol. Lung Cell. Mol. Physiol. 278, L217–L226 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Teoh, C., Tan, S. & Tran, T. Integrins as therapeutic targets for respiratory diseases. Curr. Mol. Med. 15, 714–734 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Shanker, V. R., Bruun, T. U. J., Hie, B. L. & Kim, P. S. Unsupervised evolution of protein and antibody complexes with a structure-informed language model. Science 385, 46–53 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schoenmaker, L. et al. mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. Int. J. Pharm. 601, 120586 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, X. G. et al. The landscape of mRNA nanomedicine. Nat. Med. 28, 2273–2287 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. B., Sun, C. Z., Wang, C., Jankovic, K. E. & Dong, Y. Z. Lipids and lipid derivatives for RNA delivery. Chem. Rev. 121, 12181–12277 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hajj, K. A. et al. A potent branched-tail lipid nanoparticle enables multiplexed mRNA delivery and gene editing in vivo. Nano Lett. 20, 5167–5175 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19, 673–694 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 23, 265–280 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, L. et al. Efficient delivery of antisense oligonucleotides using bioreducible lipid nanoparticles in vitro and in vivo. Mol. Ther. Nucleic Acids 19, 1357–1367 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang, X. H. et al. Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames. Nat. Biotechnol. 34, 875–880 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Katti, A., Diaz, B. J., Caragine, C. M., Sanjana, N. E. & Dow, L. E. CRISPR in cancer biology and therapy. Nat. Rev. Cancer 22, 259–279 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Platt, R. J. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, G. B. et al. Rapid generation of somatic mouse mosaics with locus-specific, stably integrated transgenic elements. Cell 179, 251–267 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 22, 2227–2235 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Zuris, J. A. et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33, 73–80 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, S. et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4, 209–221 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Rothgangl, T. et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat. Biotechnol. 39, 949–957 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Donati, Y., Blaskovic, S., Ruchonnet-Métrailler, I., Lascano Maillard, J. & Barazzone-Argiroffo, C. Simultaneous isolation of endothelial and alveolar epithelial type I and type II cells during mouse lung development in the absence of a transgenic reporter. Am. J. Physiol. Lung Cell. Mol. Physiol. 318, L619–L630 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Toulmin, S. A. et al. Type II alveolar cell MHCII improves respiratory viral disease outcomes while exhibiting limited antigen presentation. Nat. Commun. 12, 3993 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Olesch, C. et al. Picturing of the lung tumor cellular composition by multispectral flow cytometry. Front. Immunol. 13, 827719 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, Y. et al. In vivo editing of lung stem cells for durable gene correction in mice. Science 384, 1196–1202 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Modulation of CD19 surface expression in B cell acute lymphoblastic leukemia. Nat. Immunol. 23, 1410–1411 (2022).

  • Swingle, K. L. et al. Placenta-tropic VEGF mRNA lipid nanoparticles ameliorate murine pre-eclampsia. Nature https://doi.org/10.1038/s41586-024-08291-2 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lian, X. et al. Bone-marrow-homing lipid nanoparticles for genome editing in diseased and malignant haematopoietic stem cells. Nat. Nanotechnol. 19, 1409–1417 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Adolfsson, J. et al. Upregulation of Flt3 expression within the bone marrow LinSca1+c-kit+ stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15, 659–669 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Engelhard, S. et al. Endomucin marks quiescent long-term multi-lineage repopulating hematopoietic stem cells and is essential for their transendothelial migration. Cell Rep. 43, 114475 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Mayle, A., Luo, M., Jeong, M. & Goodell, M. A. Flow cytometry analysis of murine hematopoietic stem cells. Cytom. Part A 83A, 27–37 (2013).

    CAS 

    Google Scholar 

  • Rodeheffer, M. S., Birsoy, K. & Friedman, J. M. Identification of white adipocyte progenitor cells in vivo. Cell 135, 240–249 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, Y.-H., Petkova, A. P., Mottillo, E. P. & Granneman, J. G. In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding. Cell Metab. 15, 480–491 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garritson, J. D. et al. BMPER is a marker of adipose progenitors and adipocytes and a positive modulator of adipogenesis. Commun. Biol. 6, 638 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zomer, H. D. & Reddi, P. P. Characterization of rodent Sertoli cell primary cultures. Mol. Reprod. Dev. 87, 857–870 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, Y., Zhang, X., Desmarais, J. A. & Nagano, M. Postnatal development of mouse spermatogonial stem cells as determined by immunophenotype, regenerative capacity, and long-term culture-initiating ability: a model for practical applications. Sci. Rep. 14, 2299 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Omo-Lamai, S. et al. Physicochemical targeting of lipid nanoparticles to the lungs induces clotting: mechanisms and solutions. Adv. Mater. 36, 2312026 (2023).

    Google Scholar 

  • Witten, J. et al. Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02490-y (2024).

    PubMed 

    Google Scholar 

  • Li, B. et al. Accelerating ionizable lipid discovery for mRNA delivery using machine learning and combinatorial chemistry. Nat. Mater. 23, 1002–1008 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Dobrowolski, C. et al. Nanoparticle single-cell multiomic readouts reveal that cell heterogeneity influences lipid nanoparticle-mediated messenger RNA delivery. Nat. Nanotechnol. 17, 871–879 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Comput. 8, 3257–3273 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    CAS 

    Google Scholar 

  • Sali, A. & Blundell, T. L. Comparative protein modeling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • Abdin, O., Nim, S., Wen, H. & Kim, P. M. PepNN: a deep attention model for the identification of peptide binding sites. Commun. Biol. 5, 503 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kozlovskii, I. & Popov, P. Protein-peptide binding site detection using 3D convolutional neural networks. J. Chem. Inf. Model. 61, 3814–3823 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A. & Moreno, E. gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput. 17, 6281–6291 (2021).

    PubMed 

    Google Scholar 

  • Miller, B. R. III et al. MMPBSA.py: an efficient program for end-state free energy calculations. J. Chem. Theory Comput. 8, 3314–3321 (2012).

    CAS 
    PubMed 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *