• May 17, 2025
  • Live Match Score
  • 0


  • Cavalleri, A., Tóth, C., Siders, C. W. & Squier, J. A. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys. Rev. Lett. 87, 237401 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mariager, S. O. et al. Structural and magnetic dynamics of a laser induced phase transition in FeRh. Phys. Rev. Lett. 108, 087201 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morrison, V. R. et al. A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction. Science 346, 445–448 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mogunov, I. A. et al. Large non-thermal contribution to picosecond strain pulse generation using the photo-induced phase transition in VO2. Nat. Commun. 11, 1690 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gorobtsov, O. Y. et al. Femtosecond control of phonon dynamics near a magnetic order critical point. Nat. Commun. 12, 2865 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qi, Y. et al. Photoinduced ultrafast transition of the local correlated structure in chalcogenide phase-change materials. Phys. Rev. Lett. 129, 135701 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hervé, M. et al. Ultrafast and persistent photoinduced phase transition at room temperature monitored by streaming powder diffraction. Nat. Commun. 15, 267 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Waldecker, L., Bertoni, R., Ernstorfer, R. & Vorberger, J. Electron-phonon coupling and energy flow in a simple metal beyond the two-temperature approximation. Phys. Rev. X 6, 021003 (2016).

    Google Scholar 

  • Pudell, J.-E. et al. Heat transport without heating?—an ultrafast X-ray perspective into a metal heterostructure. Adv. Funct. Mater. 30, 2004555 (2020).

    Article 
    CAS 

    Google Scholar 

  • Bargheer, M. et al. Coherent atomic motions in a nanostructure studied by femtosecond X-ray diffraction. Science 306, 1771–1773 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mante, P.-A., Devos, A. & Le Louarn, A. Generation of terahertz acoustic waves in semiconductor quantum dots using femtosecond laser pulses. Phys. Rev. B 81, 113305 (2010).

    Article 

    Google Scholar 

  • Matsuda, O., Tachizaki, T., Fukui, T., Baumberg, J. J. & Wright, O. Acoustic phonon generation and detection in GaAs/Al0.3Ga0.7As quantum wells with picosecond laser pulses. Phys. Rev. B 71, 115330 (2005).

    Article 

    Google Scholar 

  • Reid, A. H. et al. Beyond a phenomenological description of magnetostriction. Nat. Commun. 9, 388 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dornes, C. et al. The ultrafast Einstein–de Haas effect. Nature 565, 209–212 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mattern, M., Pudell, J.-E., Laskin, G., von Reppert, A. & Bargheer, M. Analysis of the temperature- and fluence-dependent magnetic stress in laser-excited SrRuO3. Struct. Dyn. 8, 024302 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tauchert, S. R. et al. Polarized phonons carry angular momentum in ultrafast demagnetization. Nature 602, 73–77 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mattern, M., Pudell, J.-P., Dumesnil, K., von Reppert, A. & Bargheer, M. Towards shaping picosecond strain pulses via magnetostrictive transducers. Photoacoustics 30, 100463 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Windsor, Y. W. et al. Exchange-striction driven ultrafast nonthermal lattice dynamics in NiO. Phys. Rev. Lett. 126, 147202 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wen, H. et al. Electronic origin of ultrafast photoinduced strain in BiFeO3. Phys. Rev. Lett. 110, 037601 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Schick, D. et al. Localized excited charge carriers generate ultrafast inhomogeneous strain in the multiferroic BiFeO3. Phys. Rev. Lett. 112, 097602 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Lejman, M. et al. Giant ultrafast photo-induced shear strain in ferroelectric BiFeO3. Nat. Commun. 5, 4301 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gu, R. et al. Temporal and spatial tracking of ultrafast light-induced strain and polarization modulation in a ferroelectric thin film. Sci. Adv. 9, eadi1160 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eichberger, M. et al. Snapshots of cooperative atomic motions in the optical suppression of charge density waves. Nature 468, 799–802 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Luo, D. et al. Ultrafast optomechanical strain in layered GeS. Nano Lett. 23, 2287–2294 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zong, A. et al. Spin-mediated shear oscillators in a van der Waals antiferromagnet. Nature 620, 988–993 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Buzzi, M. et al. Probing dynamics in quantum materials with femtosecond X-rays. Nat. Rev. Mater. 3, 299–311 (2018).

    Article 
    CAS 

    Google Scholar 

  • Lian, Y., Sun, J. & Jiang, L. Probing electron and lattice dynamics by ultrafast electron microscopy: principles and applications. Int. J. Mech. Syst. Dyn. 3, 192–212 (2023).

    Article 

    Google Scholar 

  • Afanasiev, D. et al. Control of the ultrafast photoinduced magnetization across the Morin transition in DyFeO3. Phys. Rev. Lett. 116, 097401 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, H. C. et al. Large ultrafast-modulated Voigt effect in noncollinear antiferromagnet Mn3Sn. Nat. Commun. 12, 5266 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borovik-Romanov, A. S., Grimmer, H. & Kenzelmann, M. in International Tables for Crystallography 2nd edn, Vol. D, Ch. 1.5 (Wiley, 2013).

  • Meng, Q. et al. Magnetostriction, piezomagnetism and domain nucleation in a kagome antiferromagnet. Nat. Commun. 15, 6921 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, C.-L., Gusev, V., Peng, L.-H., Sheu, J.-K. & Sun, C.-K. Ultra-short photoacoustic pulse generation through hot electron pressure in two-dimensional electron gas. Opt. Express 28, 34045–34053 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Renninger, W. H. et al. Bulk crystalline optomechanics. Nat. Phys. 14, 601–607 (2018).

    Article 
    CAS 

    Google Scholar 

  • Zivari, A. et al. On-chip distribution of quantum information using traveling phonons. Sci. Adv. 8, eadd2811 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benetti, G. et al. Photoacoustic sensing of trapped fluids in nanoporous thin films: device engineering and sensing scheme. ACS Appl. Mater. Interfaces 10, 27947–27954 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gil-Santos, E. et al. Optomechanical detection of vibration modes of a single bacterium. Nat. Nanotechnol. 15, 469–474 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pérez-Cota, F. et al. Picosecond ultrasonics for elasticity-based imaging and characterization of biological cells. J. Appl. Phys. 128, 160902 (2020).

    Article 

    Google Scholar 

  • Matsuda, O., Larciprete, M. C., Li Voti, R. & Wright, O. B. Fundamentals of picosecond laser ultrasonics. Ultrasonics 56, 3–20 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Matsuda, O. et al. Ultrafast ellipsometric interferometry for direct detection of coherent phonon strain pulse profiles. J. Opt. Soc. Am. B 30, 1911–1921 (2013).

    Article 
    CAS 

    Google Scholar 

  • Satzinger, K. J. et al. Quantum control of surface acoustic-wave phonons. Nature 563, 661–665 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hahn, C. T. et al. Hardware-efficient quantum random access memory with hybrid quantum acoustic systems. Phys. Rev. Lett. 123, 250501 (2019).

    Article 

    Google Scholar 

  • Thomsen, C., Grahn, H. T., Maris, H. J. & Tauc, J. Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34, 4129–4138 (1986).

    Article 
    CAS 

    Google Scholar 

  • Pupeikis, J. et al. Efficient pump-probe sampling with a single-cavity dual-comb laser: application in ultrafast photoacoustics. Photoacoustics 29, 100439 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Akimov, A. V., Scherbakov, A. V., Yakovlev, A. V., Foxon, C. T. & Bayer, M. Ultrafast band-gap shift induced by a strain pulse in semiconductor heterostructures. Phys. Rev. Lett. 97, 037401 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rashba, E. I. & Sturge, M.D. (eds) Excitons (North-Holland, 1982).

  • Thomsen, C., Grahn, H. T., Maris, H. J. & Tauc, J. Picosecond interferometric technique for study of phonons in the Brillouin frequency range. J. Opt. Commun. 60, 55–58 (1986).

    Article 
    CAS 

    Google Scholar 

  • Gusev, V. E. & Ruello, P. Advances in applications of time-domain Brillouin scattering for nanoscale imaging. Appl. Phys. Lett. 5, 031101 (2018).

    Google Scholar 

  • Santos, P. V. & Fainstein, A. Polaromechanics: polaritonics meets optomechanics. Opt. Mater. Express 13, 1974–1983 (2023).

    Article 
    CAS 

    Google Scholar 

  • Kosobukin, V. A. Transmission and reflection of light by semiconductor superlattices in the region of excitonic resonances. Sov. Phys. Solid State 34, 1662–1668 (1992).

    Google Scholar 

  • Scherbakov, A. V. et al. Chirping of an optical transition by an ultrafast acoustic soliton train in a semiconductor quantum well. Phys. Rev. Lett. 99, 057402 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tas, G. & Maris, H. J. Electron diffusion in metals studied by picosecond ultrasonics. Phys. Rev. B 49, 15046–15054 (1994).

    Article 
    CAS 

    Google Scholar 

  • Zhang, J., Cui, J., Yang, Z. & Yu, Y. Heat capacity and thermal expansion of metal crystalline materials based on dynamic thermal vibration. Comput. Mech. 63, 971–984 (2019).

    Article 

    Google Scholar 

  • Yan, X.-J. et al. Investigation on the phase-transition-induced hysteresis in the thermal transport along the c-axis of MoTe2. npj Quant. Mater. 2, 31 (2017).

    Article 

    Google Scholar 

  • Mishra, K. K., Sahu, B. K. & Bonu, V. Raman fingerprint of pressure-induced phase transition in SnO2 nanoparticles: Grüneisen parameter and thermal expansion. J. Phys. Chem. C 125, 23287–23298 (2021).

    Article 
    CAS 

    Google Scholar 

  • Cazorla, C. et al. Light-driven dynamical tuning of the thermal conductivity in ferroelectrics. Nanoscale 16, 8335–8344 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tomoda, M., Matsuo, H., Matsuda, O., Li Voti, R. & Wright, O. B. Tomographic reconstruction of picosecond acoustic strain pulses using automated angle-scan probing with visible light. Photoacoustics 34, 100567 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, Q. et al. Ultrafast mode-locked laser in nanophotonic lithium niobate. Science 382, 708–713 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kobecki, M. et al. Giant photoelasticity of polaritons for detection of coherent phonons in a superlattice with quantum sensitivity. Phys. Rev. Lett. 128, 157401 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Karzel, M. et al. Polariton-induced transparency in multiple quantum wells probed by time-domain Brillouin scattering. ACS Photon. 11, 5147–5154 (2024).

    Article 
    CAS 

    Google Scholar 

  • Buyco, E. H. & Davis, F. E. Specific heat of aluminum from zero to its melting temperature and beyond. Equation for representation of the specific heat of solids. J. Chem. Eng. Data 15, 518–523 (1970).

    Article 
    CAS 

    Google Scholar 

  • Duthil P. Material properties at low temperature. In Proc. of the CAS-CERN Accelerator School: Superconductivity for Accelerators (ed. Bailey, R.) 77–95 (CERN, 2014).

  • Pollak, F. H. & Cardona, M. Piezo-electroreflectance in Ge, GaAs, and Si. Phys. Rev. 172, 816–837 (1968).

    Article 
    CAS 

    Google Scholar 

  • Newnham, R. E. Properties of Materials: Anisotropy, Symmetry, Structure 297 (Oxford Univ. Press, 2004).

  • Karzel, M. et al. Experimental signals and processed data used in the research work “Polariton probing of attometre displacement and nanoscale strain in ultrashort acoustic pulses”. Zenodo https://doi.org/10.5281/zenodo.15020024 (2025).


  • Leave a Reply

    Your email address will not be published. Required fields are marked *