
Cavalleri, A., Tóth, C., Siders, C. W. & Squier, J. A. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys. Rev. Lett. 87, 237401 (2001).
Google Scholar
Mariager, S. O. et al. Structural and magnetic dynamics of a laser induced phase transition in FeRh. Phys. Rev. Lett. 108, 087201 (2012).
Google Scholar
Morrison, V. R. et al. A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction. Science 346, 445–448 (2014).
Google Scholar
Mogunov, I. A. et al. Large non-thermal contribution to picosecond strain pulse generation using the photo-induced phase transition in VO2. Nat. Commun. 11, 1690 (2020).
Google Scholar
Gorobtsov, O. Y. et al. Femtosecond control of phonon dynamics near a magnetic order critical point. Nat. Commun. 12, 2865 (2021).
Google Scholar
Qi, Y. et al. Photoinduced ultrafast transition of the local correlated structure in chalcogenide phase-change materials. Phys. Rev. Lett. 129, 135701 (2022).
Google Scholar
Hervé, M. et al. Ultrafast and persistent photoinduced phase transition at room temperature monitored by streaming powder diffraction. Nat. Commun. 15, 267 (2024).
Google Scholar
Waldecker, L., Bertoni, R., Ernstorfer, R. & Vorberger, J. Electron-phonon coupling and energy flow in a simple metal beyond the two-temperature approximation. Phys. Rev. X 6, 021003 (2016).
Pudell, J.-E. et al. Heat transport without heating?—an ultrafast X-ray perspective into a metal heterostructure. Adv. Funct. Mater. 30, 2004555 (2020).
Google Scholar
Bargheer, M. et al. Coherent atomic motions in a nanostructure studied by femtosecond X-ray diffraction. Science 306, 1771–1773 (2004).
Google Scholar
Mante, P.-A., Devos, A. & Le Louarn, A. Generation of terahertz acoustic waves in semiconductor quantum dots using femtosecond laser pulses. Phys. Rev. B 81, 113305 (2010).
Google Scholar
Matsuda, O., Tachizaki, T., Fukui, T., Baumberg, J. J. & Wright, O. Acoustic phonon generation and detection in GaAs/Al0.3Ga0.7As quantum wells with picosecond laser pulses. Phys. Rev. B 71, 115330 (2005).
Google Scholar
Reid, A. H. et al. Beyond a phenomenological description of magnetostriction. Nat. Commun. 9, 388 (2018).
Google Scholar
Dornes, C. et al. The ultrafast Einstein–de Haas effect. Nature 565, 209–212 (2019).
Google Scholar
Mattern, M., Pudell, J.-E., Laskin, G., von Reppert, A. & Bargheer, M. Analysis of the temperature- and fluence-dependent magnetic stress in laser-excited SrRuO3. Struct. Dyn. 8, 024302 (2021).
Google Scholar
Tauchert, S. R. et al. Polarized phonons carry angular momentum in ultrafast demagnetization. Nature 602, 73–77 (2022).
Google Scholar
Mattern, M., Pudell, J.-P., Dumesnil, K., von Reppert, A. & Bargheer, M. Towards shaping picosecond strain pulses via magnetostrictive transducers. Photoacoustics 30, 100463 (2023).
Google Scholar
Windsor, Y. W. et al. Exchange-striction driven ultrafast nonthermal lattice dynamics in NiO. Phys. Rev. Lett. 126, 147202 (2021).
Google Scholar
Wen, H. et al. Electronic origin of ultrafast photoinduced strain in BiFeO3. Phys. Rev. Lett. 110, 037601 (2013).
Google Scholar
Schick, D. et al. Localized excited charge carriers generate ultrafast inhomogeneous strain in the multiferroic BiFeO3. Phys. Rev. Lett. 112, 097602 (2014).
Google Scholar
Lejman, M. et al. Giant ultrafast photo-induced shear strain in ferroelectric BiFeO3. Nat. Commun. 5, 4301 (2014).
Google Scholar
Gu, R. et al. Temporal and spatial tracking of ultrafast light-induced strain and polarization modulation in a ferroelectric thin film. Sci. Adv. 9, eadi1160 (2023).
Google Scholar
Eichberger, M. et al. Snapshots of cooperative atomic motions in the optical suppression of charge density waves. Nature 468, 799–802 (2010).
Google Scholar
Luo, D. et al. Ultrafast optomechanical strain in layered GeS. Nano Lett. 23, 2287–2294 (2023).
Google Scholar
Zong, A. et al. Spin-mediated shear oscillators in a van der Waals antiferromagnet. Nature 620, 988–993 (2023).
Google Scholar
Buzzi, M. et al. Probing dynamics in quantum materials with femtosecond X-rays. Nat. Rev. Mater. 3, 299–311 (2018).
Google Scholar
Lian, Y., Sun, J. & Jiang, L. Probing electron and lattice dynamics by ultrafast electron microscopy: principles and applications. Int. J. Mech. Syst. Dyn. 3, 192–212 (2023).
Google Scholar
Afanasiev, D. et al. Control of the ultrafast photoinduced magnetization across the Morin transition in DyFeO3. Phys. Rev. Lett. 116, 097401 (2016).
Google Scholar
Zhao, H. C. et al. Large ultrafast-modulated Voigt effect in noncollinear antiferromagnet Mn3Sn. Nat. Commun. 12, 5266 (2021).
Google Scholar
Borovik-Romanov, A. S., Grimmer, H. & Kenzelmann, M. in International Tables for Crystallography 2nd edn, Vol. D, Ch. 1.5 (Wiley, 2013).
Meng, Q. et al. Magnetostriction, piezomagnetism and domain nucleation in a kagome antiferromagnet. Nat. Commun. 15, 6921 (2024).
Google Scholar
Wu, C.-L., Gusev, V., Peng, L.-H., Sheu, J.-K. & Sun, C.-K. Ultra-short photoacoustic pulse generation through hot electron pressure in two-dimensional electron gas. Opt. Express 28, 34045–34053 (2020).
Google Scholar
Renninger, W. H. et al. Bulk crystalline optomechanics. Nat. Phys. 14, 601–607 (2018).
Google Scholar
Zivari, A. et al. On-chip distribution of quantum information using traveling phonons. Sci. Adv. 8, eadd2811 (2022).
Google Scholar
Benetti, G. et al. Photoacoustic sensing of trapped fluids in nanoporous thin films: device engineering and sensing scheme. ACS Appl. Mater. Interfaces 10, 27947–27954 (2018).
Google Scholar
Gil-Santos, E. et al. Optomechanical detection of vibration modes of a single bacterium. Nat. Nanotechnol. 15, 469–474 (2020).
Google Scholar
Pérez-Cota, F. et al. Picosecond ultrasonics for elasticity-based imaging and characterization of biological cells. J. Appl. Phys. 128, 160902 (2020).
Google Scholar
Matsuda, O., Larciprete, M. C., Li Voti, R. & Wright, O. B. Fundamentals of picosecond laser ultrasonics. Ultrasonics 56, 3–20 (2015).
Google Scholar
Matsuda, O. et al. Ultrafast ellipsometric interferometry for direct detection of coherent phonon strain pulse profiles. J. Opt. Soc. Am. B 30, 1911–1921 (2013).
Google Scholar
Satzinger, K. J. et al. Quantum control of surface acoustic-wave phonons. Nature 563, 661–665 (2018).
Google Scholar
Hahn, C. T. et al. Hardware-efficient quantum random access memory with hybrid quantum acoustic systems. Phys. Rev. Lett. 123, 250501 (2019).
Google Scholar
Thomsen, C., Grahn, H. T., Maris, H. J. & Tauc, J. Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34, 4129–4138 (1986).
Google Scholar
Pupeikis, J. et al. Efficient pump-probe sampling with a single-cavity dual-comb laser: application in ultrafast photoacoustics. Photoacoustics 29, 100439 (2023).
Google Scholar
Akimov, A. V., Scherbakov, A. V., Yakovlev, A. V., Foxon, C. T. & Bayer, M. Ultrafast band-gap shift induced by a strain pulse in semiconductor heterostructures. Phys. Rev. Lett. 97, 037401 (2006).
Google Scholar
Rashba, E. I. & Sturge, M.D. (eds) Excitons (North-Holland, 1982).
Thomsen, C., Grahn, H. T., Maris, H. J. & Tauc, J. Picosecond interferometric technique for study of phonons in the Brillouin frequency range. J. Opt. Commun. 60, 55–58 (1986).
Google Scholar
Gusev, V. E. & Ruello, P. Advances in applications of time-domain Brillouin scattering for nanoscale imaging. Appl. Phys. Lett. 5, 031101 (2018).
Santos, P. V. & Fainstein, A. Polaromechanics: polaritonics meets optomechanics. Opt. Mater. Express 13, 1974–1983 (2023).
Google Scholar
Kosobukin, V. A. Transmission and reflection of light by semiconductor superlattices in the region of excitonic resonances. Sov. Phys. Solid State 34, 1662–1668 (1992).
Scherbakov, A. V. et al. Chirping of an optical transition by an ultrafast acoustic soliton train in a semiconductor quantum well. Phys. Rev. Lett. 99, 057402 (2007).
Google Scholar
Tas, G. & Maris, H. J. Electron diffusion in metals studied by picosecond ultrasonics. Phys. Rev. B 49, 15046–15054 (1994).
Google Scholar
Zhang, J., Cui, J., Yang, Z. & Yu, Y. Heat capacity and thermal expansion of metal crystalline materials based on dynamic thermal vibration. Comput. Mech. 63, 971–984 (2019).
Google Scholar
Yan, X.-J. et al. Investigation on the phase-transition-induced hysteresis in the thermal transport along the c-axis of MoTe2. npj Quant. Mater. 2, 31 (2017).
Google Scholar
Mishra, K. K., Sahu, B. K. & Bonu, V. Raman fingerprint of pressure-induced phase transition in SnO2 nanoparticles: Grüneisen parameter and thermal expansion. J. Phys. Chem. C 125, 23287–23298 (2021).
Google Scholar
Cazorla, C. et al. Light-driven dynamical tuning of the thermal conductivity in ferroelectrics. Nanoscale 16, 8335–8344 (2024).
Google Scholar
Tomoda, M., Matsuo, H., Matsuda, O., Li Voti, R. & Wright, O. B. Tomographic reconstruction of picosecond acoustic strain pulses using automated angle-scan probing with visible light. Photoacoustics 34, 100567 (2023).
Google Scholar
Guo, Q. et al. Ultrafast mode-locked laser in nanophotonic lithium niobate. Science 382, 708–713 (2023).
Google Scholar
Kobecki, M. et al. Giant photoelasticity of polaritons for detection of coherent phonons in a superlattice with quantum sensitivity. Phys. Rev. Lett. 128, 157401 (2022).
Google Scholar
Karzel, M. et al. Polariton-induced transparency in multiple quantum wells probed by time-domain Brillouin scattering. ACS Photon. 11, 5147–5154 (2024).
Google Scholar
Buyco, E. H. & Davis, F. E. Specific heat of aluminum from zero to its melting temperature and beyond. Equation for representation of the specific heat of solids. J. Chem. Eng. Data 15, 518–523 (1970).
Google Scholar
Duthil P. Material properties at low temperature. In Proc. of the CAS-CERN Accelerator School: Superconductivity for Accelerators (ed. Bailey, R.) 77–95 (CERN, 2014).
Pollak, F. H. & Cardona, M. Piezo-electroreflectance in Ge, GaAs, and Si. Phys. Rev. 172, 816–837 (1968).
Google Scholar
Newnham, R. E. Properties of Materials: Anisotropy, Symmetry, Structure 297 (Oxford Univ. Press, 2004).
Karzel, M. et al. Experimental signals and processed data used in the research work “Polariton probing of attometre displacement and nanoscale strain in ultrashort acoustic pulses”. Zenodo https://doi.org/10.5281/zenodo.15020024 (2025).