• July 4, 2025
  • Live Match Score
  • 0


  • Draxl, C. & Scheffler, M. The NOMAD laboratory: from data sharing to artificial intelligence. J. Phys. Mater. 2, 036001 (2019).

    Article 
    CAS 

    Google Scholar 

  • Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials design and discovery with high-throughput density functional theory: the Open Quantum Materials Database (OQMD). JOM 65, 1501–1509 (2013).

    Article 
    CAS 

    Google Scholar 

  • Kirklin, S. et al. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. npj Comput. Mater. 1, 15010 (2015).

    Article 
    CAS 

    Google Scholar 

  • Curtarolo, S. et al. AFLOW: an automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2012).

    Article 
    CAS 

    Google Scholar 

  • Calderon, C. E. et al. The AFLOW standard for high-throughput materials science calculations. Comput. Mater. Sci. 108, 233–238 (2015).

    Article 
    CAS 

    Google Scholar 

  • Choudhary, K. et al. The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design. npj Comput. Mater. 6, 173 (2020).

    Article 

    Google Scholar 

  • Talirz, L. et al. Materials Cloud, a platform for open computational science. Sci. Data 7, 299 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, R. X. et al. Big data in a nano world: a review on computational, data-driven design of nanomaterials structures, properties, and synthesis. ACS Nano 16, 19873–19891 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Qu, X. et al. The Electrolyte Genome project: a big data approach in battery materials discovery. Comput. Mater. Sci. 103, 56–67 (2015).

    Article 
    CAS 

    Google Scholar 

  • Cheng, L. et al. Accelerating electrolyte discovery for energy storage with high-throughput screening. J. Phys. Chem. Lett. 6, 283–291 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Spotte-Smith, E. W. C. et al. A database of molecular properties integrated in the Materials Project. Digit. Discov. 2, 1862–1882 (2023).

    Article 
    CAS 

    Google Scholar 

  • Huo, H. et al. Semi-supervised machine-learning classification of materials synthesis procedures. npj Comput. Mater. 5, 62 (2019).

    Article 

    Google Scholar 

  • Kononova, O. et al. Text-mined dataset of inorganic materials synthesis recipes. Sci. Data 6, 203 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, T. et al. Similarity of precursors in solid-state synthesis as text-mined from scientific literature. Chem. Mater. 32, 7861–7873 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhou, F., Cococcioni, M., Marianetti, C. A., Morgan, D. & Ceder, G. First-principles prediction of redox potentials in transition-metal compounds with LDA + U. Phys. Rev. B 70, 235121 (2004).

    Article 

    Google Scholar 

  • Adams, S. & Rao, R. P. High power lithium ion battery materials by computational design: high power Li ion battery materials by computational design. Phys. Status Solidi A 208, 1746–1753 (2011).

    Article 
    CAS 

    Google Scholar 

  • Wang, L., Maxisch, T. & Ceder, G. A first-principles approach to studying the thermal stability of oxide cathode materials. Chem. Mater. 19, 543–552 (2007).

    Article 
    CAS 

    Google Scholar 

  • Ong, S. P., Jain, A., Hautier, G., Kang, B. & Ceder, G. Thermal stabilities of delithiated olivine MPO4 (M = Fe, Mn) cathodes investigated using first principles calculations. Electrochem. Commun. 12, 427–430 (2010).

    Article 
    CAS 

    Google Scholar 

  • Rosen, A. S. et al. High-throughput predictions of metal–organic framework electronic properties: theoretical challenges, graph neural networks, and data exploration. npj Comput. Mater. 8, 112 (2022).

    Article 
    CAS 

    Google Scholar 

  • Chanussot, L. et al. Open Catalyst 2020 (OC20) dataset and community challenges. ACS Catal. 11, 6059–6072 (2021).

    Article 
    CAS 

    Google Scholar 

  • Furness, J. W., Kaplan, A. D., Ning, J., Perdew, J. P. & Sun, J. Accurate and numerically efficient r2SCAN meta-generalized gradient approximation. J. Phys. Chem. Lett. 11, 8208–8215 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kingsbury, R. et al. Performance comparison of r2SCAN and SCAN metaGGA density functionals for solid materials via an automated, high-throughput computational workflow. Phys. Rev. Mater. 6, 013801 (2022).

    Article 
    CAS 

    Google Scholar 

  • Kingsbury, R. S. et al. A flexible and scalable scheme for mixing computed formation energies from different levels of theory. npj Comput. Mater. 8, 195 (2022).

    Article 

    Google Scholar 

  • Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. Recent developments in the Inorganic Crystal Structure Database: theoretical crystal structure data and related features. J. Appl. Crystallogr. 52, 918–925 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Villars, P. et al. The Pauling File, Binaries Edition. J. Alloys Compd. 367, 293–297 (2004).

    Article 
    CAS 

    Google Scholar 

  • Gražulis, S. et al. Crystallography Open Database – an open-access collection of crystal structures. J. Appl. Crystallogr. 42, 726–729 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Jacobsson, T. J. et al. An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles. Nat. Energy 7, 107–115 (2021).

    Article 

    Google Scholar 

  • Borysov, S. S., Geilhufe, R. M. & Balatsky, A. V. Organic materials database: an open-access online database for data mining. PLoS ONE 12, e0171501 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Landis, D. D. et al. The Computational Materials Repository. Comput. Sci. Eng. 14, 51–57 (2012).

    Article 

    Google Scholar 

  • Schmidt, J. et al. Machine-learning-assisted determination of the global zero-temperature phase diagram of materials. Adv. Mater. 35, 2210788 (2023).

    Article 
    CAS 

    Google Scholar 

  • Hautier, G., Fischer, C., Ehrlacher, V., Jain, A. & Ceder, G. Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem. 50, 656–663 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Eckert, H. et al. The AFLOW library of crystallographic prototypes: part 4. Comput. Mater. Sci. 240, 112988 (2024).

    Article 
    CAS 

    Google Scholar 

  • Ye, W., Lei, X., Aykol, M. & Montoya, J. H. Novel inorganic crystal structures predicted using autonomous simulation agents. Sci. Data 9, 302 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Woods-Robinson, R., Horton, M. K. & Persson, K. A. A method to computationally screen for tunable properties of crystalline alloys. Patterns 4, 100723 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Barroso-Luque, L. et al. smol: a Python package for cluster expansions and beyond. J. Open Source Softw. 7, 4504 (2022).

    Article 

    Google Scholar 

  • Scheffler, M. et al. FAIR data enabling new horizons for materials research. Nature 604, 635–642 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Chen, C. & Ong, S. P. A universal graph deep learning interatomic potential for the periodic table. Nat. Comput. Sci. 2, 718–728 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Deng, B. et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 5, 1031–1041 (2023).

    Article 

    Google Scholar 

  • Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source Python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article 
    CAS 

    Google Scholar 

  • Huck, P. et al. User applications driven by the community contribution framework MPContribs in the Materials Project. Concurr. Comput. 28, 1982–1993 (2016).

    Article 

    Google Scholar 

  • Ganose, A. et al. Atomate2: modular workflows for materials science. Preprint at https://doi.org/10.26434/chemrxiv-2025-tcr5h (2025).

  • Ganose, A. et al. Atomate2 code repository. GitHub https://github.com/materialsproject/atomate2 (2025).

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    CAS 

    Google Scholar 

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    CAS 

    Google Scholar 

  • Zimmermann, N. E. R. & Jain, A. Local structure order parameters and site fingerprints for quantification of coordination environment and crystal structure similarity. RSC Adv. 10, 6063–6081 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Waroquiers, D. et al. ChemEnv: a fast and robust coordination environment identification tool. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 76, 683–695 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ganose, A. M. & Jain, A. Robocrystallographer: automated crystal structure text descriptions and analysis. MRS Commun. 9, 874–881 (2019).

    Article 
    CAS 

    Google Scholar 

  • McDermott, M. J., Dwaraknath, S. S. & Persson, K. A. A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis. Nat. Commun. 12, 3097 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • McDermott, M. J. et al. Assessing thermodynamic selectivity of solid-state reactions for the predictive synthesis of inorganic materials. ACS Cent. Sci. 9, 1957–1975 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Shen, J.-X., Horton, M. & Persson, K. A. A charge-density-based general cation insertion algorithm for generating new Li-ion cathode materials. npj Comput. Mater. 6, 161 (2020).

    Article 
    CAS 

    Google Scholar 

  • Li, H. H., Shen, J.-X. & Persson, K. A. A rapid lithium-ion cathode discovery pipeline and its exemplary application. Energy Adv. https://doi.org/10.1039/D3YA00397C (2024).

  • Shen, J.-X., Li, H. H., Rutt, A., Horton, M. K. & Persson, K. A. Topological graph-based analysis of solid-state ion migration. npj Comput. Mater. 9, 99 (2023).

    Article 

    Google Scholar 

  • Rutt, A. et al. Expanding the material search space for multivalent cathodes. ACS Appl. Mater. Interfaces 14, 44367–44376 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Huck, P., Jain, A., Gunter, D., Winston, D. & Persson, K. A community contribution framework for sharing materials data with materials project. In 2015 IEEE 11th International Conference on e-Science 535–541 (IEEE, 2015); https://doi.org/10.1109/eScience.2015.75

  • Bauer, S. et al. Roadmap on data-centric materials science. Model. Simul. Mater. Sci. Eng. 32, 063301 (2024).

    Article 

    Google Scholar 

  • Aykol, M. et al. High-throughput computational design of cathode coatings for Li-ion batteries. Nat. Commun. 7, 13779 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Luo, S., Li, T., Wang, X., Faizan, M. & Zhang, L. High-throughput computational materials screening and discovery of optoelectronic semiconductors. WIREs Comput. Mol. Sci. 11, e1489 (2021).

    Article 
    CAS 

    Google Scholar 

  • Luo, X. & Xie, R.-J. Recent progress on discovery of novel phosphors for solid state lighting. J. Rare Earths 38, 464–473 (2020).

    Article 

    Google Scholar 

  • Gorai, P., Stevanović, V. & Toberer, E. S. Computationally guided discovery of thermoelectric materials. Nat. Rev. Mater. 2, 17053 (2017).

    Article 
    CAS 

    Google Scholar 

  • Talley, K. R., Sherbondy, R., Zakutayev, A. & Brennecka, G. L. Review of high-throughput approaches to search for piezoelectric nitrides. J. Vac. Sci. Technol. A 37, 060803 (2019).

    Article 

    Google Scholar 

  • Singh, A. K., Gorelik, R. & Biswas, T. Data-driven discovery of robust materials for photocatalytic energy conversion. Annu. Rev. Condens. Matter Phys. 14, 237–259 (2023).

    Article 
    CAS 

    Google Scholar 

  • Pan, J. & Yan, Q. Data-driven material discovery for photocatalysis: a short review. J. Semicond. 39, 071001 (2018).

    Article 

    Google Scholar 

  • Zhao, S., Kan, E. & Li, Z. Electride: from computational characterization to theoretical design. WIREs Comput. Mol. Sci. 6, 430–440 (2016).

    Article 
    CAS 

    Google Scholar 

  • Ren, E., Guilbaud, P. & Coudert, F.-X. High-throughput computational screening of nanoporous materials in targeted applications. Digit. Discov. 1, 355–374 (2022).

    Article 
    CAS 

    Google Scholar 

  • Garcia, C. A. C., Bocarsly, J. D. & Seshadri, R. Computational screening of magnetocaloric alloys. Phys. Rev. Mater. 4, 024402 (2020).

    Article 
    CAS 

    Google Scholar 

  • Shen, L., Zhou, J., Yang, T., Yang, M. & Feng, Y. P. High-throughput computational discovery and intelligent design of two-dimensional functional materials for various applications. Acc. Mater. Res. 3, 572–583 (2022).

    Article 
    CAS 

    Google Scholar 

  • Su, Y. et al. High-throughput first-principle prediction of collinear magnetic topological materials. npj Comput. Mater. 8, 261 (2022).

    Article 

    Google Scholar 

  • Frey, N. C. et al. High-throughput search for magnetic and topological order in transition metal oxides. Sci. Adv. 6, eabd1076 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Gao, J. et al. High-throughput screening for Weyl semimetals with S4 symmetry. Sci. Bull. 66, 667–675 (2021).

    Article 

    Google Scholar 

  • Ren, Z. et al. An invertible crystallographic representation for general inverse design of inorganic crystals with targeted properties. Matter 5, 314–335 (2022).

    Article 
    CAS 

    Google Scholar 

  • Hautier, G., Miglio, A., Ceder, G., Rignanese, G.-M. & Gonze, X. Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nat. Commun. 4, 2292 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Ricci, F. et al. An ab initio electronic transport database for inorganic materials. Sci. Data 4, 170085 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Bhatia, A. et al. High-mobility bismuth-based transparent p-type oxide from high-throughput material screening. Chem. Mater. 28, 30–34 (2016).

    Article 
    CAS 

    Google Scholar 

  • Wang, Z. et al. Mining unexplored chemistries for phosphors for high-color-quality white-light-emitting diodes. Joule 2, 914–926 (2018).

    Article 
    CAS 

    Google Scholar 

  • Li, S. et al. Data-driven discovery of full-visible-spectrum phosphor. Chem. Mater. 31, 6286–6294 (2019).

    Article 
    CAS 

    Google Scholar 

  • Dunstan, M. T. et al. Large scale computational screening and experimental discovery of novel materials for high temperature CO2 capture. Energy Environ. Sci. 9, 1346–1360 (2016).

    Article 
    CAS 

    Google Scholar 

  • Zhu, H. et al. Computational and experimental investigation of TmAgTe2 and XYZ2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening. J. Mater. Chem. C 3, 10554–10565 (2015).

    Article 
    CAS 

    Google Scholar 

  • Aydemir, U. et al. YCuTe2: a member of a new class of thermoelectric materials with CuTe4-based layered structure. J. Mater. Chem. A 4, 2461–2472 (2016).

    Article 
    CAS 

    Google Scholar 

  • Horton, M. K., Montoya, J. H., Liu, M. & Persson, K. A. High-throughput prediction of the ground-state collinear magnetic order of inorganic materials using density functional theory. npj Comput. Mater. 5, 64 (2019).

    Article 

    Google Scholar 

  • Cooley, J. A. et al. From waste-heat recovery to refrigeration: compositional tuning of magnetocaloric Mn1+xSb. Chem. Mater. 32, 1243–1249 (2020).

    Article 
    CAS 

    Google Scholar 

  • Burton, L. A., Ricci, F., Chen, W., Rignanese, G.-M. & Hautier, G. High-throughput identification of electrides from all known inorganic materials. Chem. Mater. 30, 7521–7526 (2018).

    Article 
    CAS 

    Google Scholar 

  • Chanhom, P. et al. Sr3CrN3: a new electride with a partially filled d-shell transition metal. J. Am. Chem. Soc. 141, 10595–10598 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Tanaka, Y. et al. New oxyhalide solid electrolytes with high lithium ionic conductivity >10 mS cm−1 for all-solid-state batteries. Angew. Chem. Int. Ed. 62, e202217581 (2023).

    Article 
    CAS 

    Google Scholar 

  • Zhuo, Y., Mansouri Tehrani, A., Oliynyk, A. O., Duke, A. C. & Brgoch, J. Identifying an efficient, thermally robust inorganic phosphor host via machine learning. Nat. Commun. 9, 4377 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Petretto, G. et al. High-throughput density-functional perturbation theory phonons for inorganic materials. Sci. Data 5, 180065 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Aykol, M., Montoya, J. H. & Hummelshøj, J. Rational solid-state synthesis routes for inorganic materials. J. Am. Chem. Soc. 143, 9244–9259 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sivonxay, E. & Persson, K. A. Density functional theory assessment of the lithiation thermodynamics and phase evolution in Si-based amorphous binary alloys. Energy Storage Mater. 53, 42–50 (2022).

    Article 

    Google Scholar 

  • Aykol, M., Dwaraknath, S. S., Sun, W. & Persson, K. A. Thermodynamic limit for synthesis of metastable inorganic materials. Sci. Adv. 4, eaaq0148 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, H. et al. The ab initio non-crystalline structure database: empowering machine learning to decode diffusivity. npj Comput. Mater. https://doi.org/10.1038/s41524-024-01469-2 (2024)

  • Bartel, C. J. Review of computational approaches to predict the thermodynamic stability of inorganic solids. J. Mater. Sci. 57, 10475–10498 (2022).

    Article 
    CAS 

    Google Scholar 

  • Raccuglia, P. et al. Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73–76 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Hautier, G., Jain, A. & Ong, S. P. From the computer to the laboratory: materials discovery and design using first-principles calculations. J. Mater. Sci. 47, 7317–7340 (2012).

    Article 
    CAS 

    Google Scholar 

  • Jain, A., Shin, Y. & Persson, K. A. Computational predictions of energy materials using density functional theory. Nat. Rev. Mater. 1, 15004 (2016).

    Article 
    CAS 

    Google Scholar 

  • Ko, T. W. & Ong, S. P. Recent advances and outstanding challenges for machine learning interatomic potentials. Nat. Comput. Sci. 3, 998–1000 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Fung, V., Ganesh, P. & Sumpter, B. G. Physically informed machine learning prediction of electronic density of states. Chem. Mater. 34, 4848–4855 (2022).

    Article 
    CAS 

    Google Scholar 

  • Torrisi, S. B. et al. Random forest machine learning models for interpretable X-ray absorption near-edge structure spectrum–property relationships. npj Comput. Mater. 6, 109 (2020).

    Article 

    Google Scholar 

  • Kong, S. et al. Density of states prediction for materials discovery via contrastive learning from probabilistic embeddings. Nat. Commun. 13, 949 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Shen, J.-X. et al. A representation-independent electronic charge density database for crystalline materials. Sci. Data 9, 661 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dunn, A., Wang, Q., Ganose, A., Dopp, D. & Jain, A. Benchmarking materials property prediction methods: the Matbench test set and Automatminer reference algorithm. npj Comput. Mater. 6, 138 (2020).

    Article 

    Google Scholar 

  • Wang, A. Y.-T., Kauwe, S. K., Murdock, R. J. & Sparks, T. D. Compositionally restricted attention-based network for materials property predictions. npj Comput. Mater. 7, 77 (2021).

    Article 

    Google Scholar 

  • Cheng, G., Gong, X.-G. & Yin, W.-J. Crystal structure prediction by combining graph network and optimization algorithm. Nat. Commun. 13, 1492 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Tadmor, E. B., Elliott, R. S., Sethna, J. P., Miller, R. E. & Becker, C. A. The potential of atomistic simulations and the knowledgebase of interatomic models. JOM 63, 17 (2011).

    Article 

    Google Scholar 

  • Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Szymanski, N. J. et al. Toward autonomous design and synthesis of novel inorganic materials. Mater. Horiz. 8, 2169–2198 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jain, A. et al. Formation enthalpies by mixing GGA and GGA + U calculations. Phys. Rev. B 84, 045115 (2011).

    Article 

    Google Scholar 

  • de Jong, M., Chen, W., Geerlings, H., Asta, M. & Persson, K. A. A database to enable discovery and design of piezoelectric materials. Sci. Data 2, 150053 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Jong, M. et al. Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data 2, 150009 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tran, R. et al. Surface energies of elemental crystals. Sci. Data 3, 160080 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Petousis, I. et al. High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials. Sci. Data 4, 160134 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Mathew, K. et al. High-throughput computational X-ray absorption spectroscopy. Sci. Data 5, 180151 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Latimer, K., Dwaraknath, S., Mathew, K., Winston, D. & Persson, K. A. Evaluation of thermodynamic equations of state across chemistry and structure in the Materials Project. npj Comput. Mater. 4, 40 (2018).

    Article 

    Google Scholar 

  • Patel, A. M., Nørskov, J. K., Persson, K. A. & Montoya, J. H. Efficient Pourbaix diagrams of many-element compounds. Phys. Chem. Chem. Phys. 21, 25323–25327 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zheng, H. et al. Grain boundary properties of elemental metals. Acta Mater. 186, 40–49 (2020).

    Article 
    CAS 

    Google Scholar 

  • Bosoni, E. et al. How to verify the precision of density-functional-theory implementations via reproducible and universal workflows. Nat. Rev. Phys. 6, 45–58 (2024).

    Article 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *