• August 1, 2025
  • Live Match Score
  • 0


  • Pardi, N. et al. mRNA vaccines—a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).

    CAS 

    Google Scholar 

  • Hou, X. et al. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    CAS 

    Google Scholar 

  • Pardi, N. & Krammer, F. mRNA vaccines for infectious diseases—advances, challenges and opportunities. Nat. Rev. Drug. Discov. 23, 838–861 (2024).

    CAS 

    Google Scholar 

  • Ju, Y. et al. Impact of anti-PEG antibodies induced by SARS-CoV-2 mRNA vaccines. Nat. Rev. Immunol. 23, 135–136 (2023).

    CAS 

    Google Scholar 

  • Chen, J. et al. Current developments and challenges of mRNA vaccines. Annu. Rev. Biomed. Eng. 24, 85–109 (2022).

    CAS 

    Google Scholar 

  • Weber, J. S. et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet 403, 632–644 (2024).

    CAS 

    Google Scholar 

  • Ndeupen, S. et al. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience 24, 103479 (2021).

    CAS 

    Google Scholar 

  • Pateev, I. et al. Biodistribution of RNA vaccines and of their products: evidence from human and animal studies. Biomedicines 12, 59 (2023).

    Google Scholar 

  • Bahl, K. et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol. Ther. 25, 1316–1327 (2017).

    CAS 

    Google Scholar 

  • Ye, Z. et al. Monovalent SARS-COV-2 mRNA vaccine using optimal UTRs and LNPs is highly immunogenic and broadly protective against Omicron variants. Proc. Natl Acad. Sci. USA 120, e2311752120 (2023).

    CAS 

    Google Scholar 

  • Shi, Y. et al. Structural and biochemical characteristics of mRNA nanoparticles determine anti-SARS-CoV-2 humoral and cellular immune responses. Sci. Adv. 8, eabo1827 (2022).

    CAS 

    Google Scholar 

  • Chen, J. et al. Lipid nanoparticle-mediated lymph node-targeting delivery of mRNA cancer vaccine elicits robust CD8+ T cell response. Proc. Natl Acad. Sci. USA 119, e2207841119 (2022).

    CAS 

    Google Scholar 

  • Kitagawa, H. et al. Adverse reactions to the BNT162b2 and mRNA-1273 mRNA COVID-19 vaccines in Japan. J. Infect. Chemother. 28, 576–581 (2022).

    CAS 

    Google Scholar 

  • Schinas, G. et al. Immune-mediated liver injury following COVID-19 vaccination. World J. Virol. 12, 100–108 (2023).

    Google Scholar 

  • Efe, C. et al. Liver injury after SARS-CoV-2 vaccination: features of immune-mediated hepatitis, role of corticosteroid therapy and outcome. Hepatology 76, 1576–1586 (2022).

    CAS 

    Google Scholar 

  • Boettler, T. et al. SARS-CoV-2 vaccination can elicit a CD8 T-cell dominant hepatitis. J. Hepatol. 77, 653–659 (2022).

    CAS 

    Google Scholar 

  • Zin Tun, G. S. et al. Immune-mediated hepatitis with the Moderna vaccine, no longer a coincidence but confirmed. J. Hepatol. 76, 738–753 (2022).

    Google Scholar 

  • Jeong, M. et al. Lipid nanoparticles (LNPs) for in vivo RNA delivery and their breakthrough technology for future applications. Adv. Drug Deliv. Rev. 200, 114990 (2023).

    CAS 

    Google Scholar 

  • Liu, M. et al. Lymph-targeted high-density lipoprotein-mimetic nanovaccine for multi-antigenic personalized cancer immunotherapy. Sci. Adv. 10, eadk2444 (2024).

    CAS 

    Google Scholar 

  • Sasaki, K. et al. mRNA-loaded lipid nanoparticles targeting dendritic cells for cancer immunotherapy. Pharmaceutics 14, 1572 (2022).

    CAS 

    Google Scholar 

  • Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    CAS 

    Google Scholar 

  • Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nat. Mater. 20, 701–710 (2021).

    CAS 

    Google Scholar 

  • Yu, X. et al. Poly(ethyl ethylene phosphate): overcoming the ‘polyethylene glycol dilemma’ for cancer immunotherapy and mRNA vaccination. ACS Nano 17, 23814–23828 (2023).

    CAS 

    Google Scholar 

  • Hald Albertsen, C. et al. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv. Drug Deliv. Rev. 188, 114416 (2022).

    CAS 

    Google Scholar 

  • Tenchov, R. et al. PEGylated lipid nanoparticle formulations: immunological safety and efficiency perspective. Bioconjug. Chem. 34, 941–960 (2023).

    CAS 

    Google Scholar 

  • Dilliard, S. A. et al. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e210925611 (2021).

    Google Scholar 

  • Elzoghby, A. O. et al. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release 157, 168–182 (2012).

    CAS 

    Google Scholar 

  • Abdallah, M. et al. Lymphatic targeting by albumin-hitchhiking: applications and optimisation. J. Control. Release 327, 117–128 (2020).

    CAS 

    Google Scholar 

  • Famta, P. et al. Albumin-hitchhiking: fostering the pharmacokinetics and anticancer therapeutics. J. Control. Release 353, 166–185 (2022).

    Google Scholar 

  • Qi, S. et al. The bright future of nanotechnology in lymphatic system imaging and imaging-guided surgery. J. Nanobiotechnol. 20, 24 (2022).

    Google Scholar 

  • Zhu, G. et al. Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy. Nat. Commun. 8, 1954 (2017).

    Google Scholar 

  • Um, W. et al. A comparative study on albumin-binding molecules for targeted tumor delivery through covalent and noncovalent approach. Bioconjug. Chem. 30, 3107–3118 (2019).

    CAS 

    Google Scholar 

  • Liu, H. et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519–522 (2014).

    CAS 

    Google Scholar 

  • Song, Y. et al. Albumin nanoparticle containing a PI3Kγ inhibitor and paclitaxel in combination with α-PD1 induces tumor remission of breast cancer in mice. Sci. Transl. Med. 14, eabl3649 (2022).

    CAS 

    Google Scholar 

  • Lin, T. et al. Blood–brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano 10, 9999–10012 (2016).

    CAS 

    Google Scholar 

  • Liu, Z. & Chen, X. Simple bioconjugate chemistry serves great clinical advances: albumin as a versatile platform for diagnosis and precision therapy. Chem. Soc. Rev. 45, 1432–1456 (2016).

    CAS 

    Google Scholar 

  • Sahin, U. et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature 595, 572–577 (2021).

    CAS 

    Google Scholar 

  • Liu, Y. et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-L1 therapy for malignant pleural effusion. Nat. Nanotechnol. 17, 206–216 (2022).

    CAS 

    Google Scholar 

  • Bern, M. et al. The role of albumin receptors in regulation of albumin homeostasis: implications for drug delivery. J. Control. Release 211, 144–162 (2015).

    CAS 

    Google Scholar 

  • Ishima, Y. et al. The new delivery strategy of albumin carrier utilizing the interaction with albumin receptors. Chem. Pharm. Bull. 70, 330–333 (2022).

    CAS 

    Google Scholar 

  • Wan, Y. et al. Stable organic photosensitizer nanoparticles with absorption peak beyond 800 nanometers and high reactive oxygen species yield for multimodality phototheranostics. ACS Nano 14, 9917–9928 (2020).

    CAS 

    Google Scholar 

  • Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).

    CAS 

    Google Scholar 

  • Nguyen, L. N. M. et al. The exit of nanoparticles from solid tumours. Nat. Mater. 22, 1261–1272 (2023).

    CAS 

    Google Scholar 

  • Embgenbroich, M. & Burgdorf, S. Current concepts of antigen cross-presentation. Front. Immunol. 9, 1643 (2018).

    Google Scholar 

  • Oğuz, F. & Atmaca, H. mRNA as a therapeutics: understanding mRNA vaccines. Adv. Pharm. Bull. 12, 274–282 (2022).

    Google Scholar 

  • Szymonowicz, K. A. & Chen, J. Biological and clinical aspects of HPV-related cancers. Cancer Biol. Med. 17, 864 (2020).

    CAS 

    Google Scholar 

  • Mirabello, L. et al. HPV16 E7 genetic conservation is critical to carcinogenesis. Cell 170, 1164–1174 (2017).

    CAS 

    Google Scholar 

  • Feshchenko, E. et al. Pandemic influenza vaccine: characterization of A/California/07/2009 (H1N1) recombinant hemagglutinin protein and insights into H1N1 antigen stability. BMC Biotechnol. 12, 77 (2012).

    CAS 

    Google Scholar 

  • Cyster, J. G. & Allen, C. D. C. B cell responses: cell interaction dynamics and decisions. Cell 177, 524–540 (2019).

    CAS 

    Google Scholar 

  • De Silva, N. S. & Klein, U. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 15, 137–148 (2015).

    Google Scholar 

  • Mittenbühler, M. J. et al. Isolation of extracellular fluids reveals novel secreted bioactive proteins from muscle and fat tissues. Cell Metab. 35, 535–549 (2023).

    Google Scholar 

  • Renier, N. et al. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159, 896–910 (2014).

    CAS 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *