• July 22, 2025
  • Live Match Score
  • 0


  • Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    CAS 

    Google Scholar 

  • Mizushima, K., Jones, P., Wiseman, P. & Goodenough, J. B. LixCoO2 (0 < x < –1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980).

    CAS 

    Google Scholar 

  • Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997).

    CAS 

    Google Scholar 

  • Thackeray, M. M., David, W. I., Bruce, P. G. & Goodenough, J. B. Lithium insertion into manganese spinels. Mater. Res. Bull. 18, 461–472 (1983).

    CAS 

    Google Scholar 

  • Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seo, D. H. et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, G.-H. et al. Reversible anionic redox activities in conventional LiNi1/3Co1/3Mn1/3O2 cathodes. Angew. Chem. Int. Ed. 59, 8681–8688 (2020).

    CAS 

    Google Scholar 

  • Lebens-Higgins, Z. W. et al. Revisiting the charge compensation mechanisms in LiNi0.8Co0.2−yAlyO2 systems. Mater. Horiz. 6, 2112–2123 (2019).

    CAS 

    Google Scholar 

  • Hua, W. et al. Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides. Nat. Commun. 10, 5365 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Zeng, L. et al. Voltage decay of Li‐rich layered oxides: mechanism, modification strategies, and perspectives. Adv. Funct. Mater. 33, 2370151 (2023).

    Google Scholar 

  • Zhang, K. et al. Sulfuration of Li‐rich Mn‐based cathode materials for multianionic redox and stabilized coordination environment. Adv. Mater. 34, 2109564 (2022).

    CAS 

    Google Scholar 

  • Li, B. et al. Decoupling the roles of Ni and Co in anionic redox activity of Li-rich NMC cathodes. Nat. Mater. 22, 1370–1379 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Zhu, Z. et al. Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment. Nat. Energy 4, 1049–1058 (2019).

    CAS 

    Google Scholar 

  • House, R. A. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577, 502–508 (2019).

    PubMed 

    Google Scholar 

  • Song, J. et al. A high‐performance Li–Mn–O Li‐rich cathode material with rhombohedral symmetry via intralayer Li/Mn disordering. Adv. Mater. 32, 2000190 (2020).

    CAS 

    Google Scholar 

  • Huang, J. et al. Non-topotactic reactions enable high rate capability in Li-rich cathode materials. Nat. Energy 6, 706–714 (2021).

    CAS 

    Google Scholar 

  • Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Kim, J. & Manthiram, A. A manganese oxyiodide cathode for rechargeable lithium batteries. Nature 390, 265–267 (1997).

    CAS 

    Google Scholar 

  • Li, Y. et al. Origin of fast charging in hard carbon anodes. Nat. Energy 9, 134–142 (2024).

    CAS 

    Google Scholar 

  • Zhang, S. et al. A family of oxychloride amorphous solid electrolytes for long-cycling all-solid-state lithium batteries. Nat. Commun. 14, 3780 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Heo, J. et al. Amorphous iron fluorosulfate as a high-capacity cathode utilizing combined intercalation and conversion reactions with unexpectedly high reversibility. Nat. Energy 8, 30–39 (2023).

    CAS 

    Google Scholar 

  • Kosova, N. V., Rezepova, D. O. & Slobodyuk, A. B. Effect of annealing temperature on the structure and electrochemistry of LiVO3. Electrochim. Acta 167, 75–83 (2015).

    CAS 

    Google Scholar 

  • Liu, Y., Zhou, X. & Guo, Y. Effects of fluorine doping on the electrochemical properties of LiV3O8 cathode material. Electrochim. Acta 54, 3184–3190 (2009).

    CAS 

    Google Scholar 

  • Chen, R. et al. Li+ intercalation in isostructural Li2VO3 and Li2VO2F with O2− and mixed O2−/F anions. Phys. Chem. Chem. Phys. 17, 17288–17295 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Ji, H. et al. Ultrahigh power and energy density in partially ordered lithium-ion cathode materials. Nat. Energy 5, 213–221 (2020).

    CAS 

    Google Scholar 

  • Li, S. et al. Facile synthesis of LiVO3 and its electrochemical behavior in rechargeable lithium batteries. J. Electroanal. Chem. 853, 113505 (2019).

    CAS 

    Google Scholar 

  • Juhás, P., Davis, T., Farrow, C. L. & Billinge, S. J. L. PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions. J. Appl. Crystallogr. 46, 560–566 (2013).

    Google Scholar 

  • Terban, M. W. & Billinge, S. J. L. Structural analysis of molecular materials using the pair distribution function. Chem. Rev. 122, 1208–1272 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, E. et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 3, 690–698 (2018).

    CAS 

    Google Scholar 

  • Hoffmann, R. et al. From widely accepted concepts in coordination chemistry to inverted ligand fields. Chem. Rev. 116, 8173–8192 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Saubanère, M., McCalla, E., Tarascon, J.-M. & Doublet, M.-L. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ. Sci. 9, 984–991 (2016).

    Google Scholar 

  • Zhang, Z. et al. Deciphering the critical effect of cathode-electrolyte interphase by revealing its dynamic evolution. J. Energy Chem. 81, 192–199 (2023).

    CAS 

    Google Scholar 

  • Zhang, J.-N. et al. Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Mater. 14, 1–7 (2018).

    Google Scholar 

  • Xu, J. et al. Elucidating anionic oxygen activity in lithium-rich layered oxides. Nat. Commun. 9, 947 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, W. & Devereaux, T. P. Anionic and cationic redox and interfaces in batteries: advances from soft X-ray absorption spectroscopy to resonant inelastic scattering. J. Power Sources 389, 188–197 (2018).

    CAS 

    Google Scholar 

  • Zhuo, Z. et al. Spectroscopic signature of oxidized oxygen states in peroxides. J. Phys. Chem. Lett. 9, 6378–6384 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • House, R. A. et al. Covalency does not suppress O2 formation in 4d and 5d Li-rich O-redox cathodes. Nat. Commun. 12, 2975 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, X. et al. Direct visualization of the reversible O2−/O redox process in Li-rich cathode materials. Adv. Mater. 30, 1705197 (2018).

    Google Scholar 

  • Chen, H. & Islam, M. S. Lithium extraction mechanism in Li-rich Li2MnO3 involving oxygen hole formation and dimerization. Chem. Mater. 28, 6656–6663 (2016).

    CAS 

    Google Scholar 

  • Kawai, K. et al. Kinetic square scheme in oxygen-redox battery electrodes. Energy Environ. Sci. 15, 2591–2600 (2022).

    CAS 

    Google Scholar 

  • Li, B. et al. Electrolytic-anion-redox adsorption pseudocapacitance in nanosized lithium-free transition metal oxides as cathode materials for Li-ion batteries. Nano Energy 72, 104727 (2020).

    CAS 

    Google Scholar 

  • Ben Yahia, M., Vergnet, J., Saubanère, M. & Doublet, M.-L. Unified picture of anionic redox in Li/Na-ion batteries. Nat. Mater. 18, 496–502 (2019).

    PubMed 

    Google Scholar 

  • Chen, Z., Li, J. & Zeng, X. C. Unraveling oxygen evolution in Li-rich oxides: a unified modeling of the intermediate peroxo/superoxo-like dimers. J. Am. Chem. Soc. 141, 10751–10759 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • McColl, K., Coles, S. W., Zarabadi-Poor, P., Morgan, B. J. & Islam, M. S. Phase segregation and nanoconfined fluid O2 in a lithium-rich oxide cathode. Nat. Mater. 23, 826–833 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suntivich, J. et al. Estimating hybridization of transition metal and oxygen states in perovskites from O K-edge X-ray absorption spectroscopy. J. Phys. Chem. C 118, 1856–1863 (2014).

    CAS 

    Google Scholar 

  • Schmitt, T. et al. High-resolution resonant inelastic X-ray scattering with soft X-rays at the ADRESS beamline of the Swiss light source: instrumental developments and scientific highlights. J. Electron. Spectrosc. Relat. Phenom. 188, 38–46 (2013).

    CAS 

    Google Scholar 

  • VandeVondele, J. et al. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    CAS 

    Google Scholar 

  • Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package—quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    PubMed 

    Google Scholar 

  • Krack, M. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor. Chem. Acc. 114, 145–152 (2005).

    CAS 

    Google Scholar 

  • VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    PubMed 

    Google Scholar 

  • Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *