• July 23, 2025
  • Live Match Score
  • 0


  • Ota, Y., Machida, M., Koyama, T. & Matsumoto, H. Theory of heterotic superconductor-insulator-superconductor Josephson junctions between single- and multiple-gap superconductors. Phys. Rev. Lett. 102, 237003 (2009).

    PubMed 

    Google Scholar 

  • Koshelev, A. E. Phase diagram of Josephson junction between s and s± superconductors in the dirty limit. Phys. Rev. B 86, 214502 (2012).

    Google Scholar 

  • Ota, Y. et al. Ambegaokar-Baratoff relations for Josephson critical current in heterojunctions with multigap superconductors. Phys. Rev. B 81, 214511 (2010).

    Google Scholar 

  • Agterberg, D. F., Demler, E. & Janko, B. Josephson effects between multigap and single-gap superconductors. Phys. Rev. B 66, 214507 (2002).

    Google Scholar 

  • Wang, D., Lu, H.-Y. & Wang, Q.-H. The finite temperature effect on Josephson junction between an s-wave superconductor and an s±-wave superconductor. Chinese Phys. Lett. 30, 077404 (2013).

    Google Scholar 

  • Lin, S.-Z. Josephson effect between a two-band superconductor with s++ or s± pairing symmetry and a conventional s-wave superconductor. Phys. Rev. B 86, 014510 (2012).

    Google Scholar 

  • Linder, J., Sperstad, I. B. & Sudbø, A. 0-π phase shifts in Josephson junctions as a signature for the s±-wave pairing state. Phys. Rev. B 80, 020503 (2009).

    Google Scholar 

  • Stanev, V. G. & Koshelev, A. E. Anomalous proximity effects at the interface of s– and s±-superconductors. Phys. Rev. B 86, 174515 (2012).

    Google Scholar 

  • Fernandes, R. M. et al. Iron pnictides and chalcogenides: a new paradigm for superconductivity. Nature 601, 35–44 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Randeria, M. T., Feldman, B. E., Drozdov, I. K. & Yazdani, A. Scanning Josephson spectroscopy on the atomic scale. Phys. Rev. B 93, 161115 (2016).

    Google Scholar 

  • Hamidian, M. H. et al. Detection of a Cooper-pair density wave in Bi2Sr2CaCu2O8+x. Nature 532, 343–347 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Cho, D., Bastiaans, K. M., Chatzopoulos, D., Gu, G. D. & Allan, M. P. A strongly inhomogeneous superfluid in an iron-based superconductor. Nature 571, 541–545 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, X., Chong, Y. X., Sharma, R. & Davis, J. C. S. Discovery of a Cooper-pair density wave state in a transition-metal dichalcogenide. Science 372, 1447–1452 (2021).

    CAS 

    Google Scholar 

  • Stanev, V. & Tešanović, Z. Three-band superconductivity and the order parameter that breaks time-reversal symmetry. Phys. Rev. B 81, 134522 (2010).

    Google Scholar 

  • Khodas, M. & Chubukov, A. V. Interpocket pairing and gap symmetry in Fe-based superconductors with only electron pockets. Phys. Rev. Lett. 108, 247003 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Kang, J., Chubukov, A. V. & Fernandes, R. M. Time-reversal symmetry-breaking nematic superconductivity in FeSe. Phys. Rev. B 98, 064508 (2018).

    CAS 

    Google Scholar 

  • Moshchalkov, V. et al. Type-1.5 superconductivity. Phys. Rev. Lett. 102, 117001 (2009).

    PubMed 

    Google Scholar 

  • Babaev, E., Carlström, J. & Speight, M. Type-1.5 superconducting state from an intrinsic proximity effect in two-band superconductors. Phys. Rev. Lett. 105, 067003 (2010).

    PubMed 

    Google Scholar 

  • Vakaryuk, V., Stanev, V., Lee, W.-C. & Levchenko, A. Topological defect-phase soliton and the pairing symmetry of a two-band superconductor: role of the proximity effect. Phys. Rev. Lett. 109, 227003 (2012).

    PubMed 

    Google Scholar 

  • Iguchi, Y. et al. Superconducting vortices carrying a temperature-dependent fraction of the flux quantum. Science 380, 1244–1247 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Zheng, Y. et al. Direct observation of quantum vortex fractionalization in multiband superconductors. Preprint at https://arxiv.org/abs/2407.18610 (2024).

  • Chen, W.-Q., Ma, F., Lu, Z.-Y. & Zhang, F.-C. π junction to probe antiphase s-wave pairing in iron pnictide superconductors. Phys. Rev. Lett. 103, 207001 (2009).

    PubMed 

    Google Scholar 

  • Liu, X., Chong, Y. X., Sharma, R. & Davis, J. C. S. Atomic-scale visualization of electron fluid flow. Nat. Mater. 20, 1480–1484 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Deng, H. et al. Chiral kagome superconductivity modulations with residual Fermi arcs. Nature 632, 775–781 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Sprau, P. O. et al. Discovery of orbital-selective Cooper pairing in FeSe. Science 357, 75–80 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Ivanchenko, Y. M. & Zil’Berman, L. A. The Josephson effect in small tunnel contacts. Sov. Phys. JETP 28, 1272–1276 (1969).

    Google Scholar 

  • Naaman, O., Teizer, W. & Dynes, R. C. Fluctuation dominated Josephson tunneling with a scanning tunneling microscope. Phys. Rev. Lett. 87, 097004 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Kimura, H., Barber, R. P. Jr., Ono, S., Ando, Y. & Dynes, R. C. Josephson scanning tunneling microscopy: a local and direct probe of the superconducting order parameter. Phys. Rev. B 80, 144506 (2009).

    Google Scholar 

  • Uhl, M. et al. Multiband Josephson effect in an atomic scale Pb tunnel junction. Phys. Rev. Res. 6, 043233 (2024).

    CAS 

    Google Scholar 

  • Carlstrom, J., Babaev, E. & Speight, M. Type-1.5 superconductivity in multiband systems: effects of interband couplings. Phys. Rev. B 83, 174509 (2011).

    Google Scholar 

  • Grigorishin, K. V. Effective Ginzburg–Landau free energy functional for multi-band isotropic superconductors. Phys. Lett. A 380, 1781–1787 (2016).

    CAS 

    Google Scholar 

  • Dong, X., Zhou, F. & Zhao, Z. Electronic and superconducting properties of some FeSe-based single crystals and films grown hydrothermally. Front. Phys. 8, 586182 (2020).

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *