
Ota, Y., Machida, M., Koyama, T. & Matsumoto, H. Theory of heterotic superconductor-insulator-superconductor Josephson junctions between single- and multiple-gap superconductors. Phys. Rev. Lett. 102, 237003 (2009).
Google Scholar
Koshelev, A. E. Phase diagram of Josephson junction between s and s± superconductors in the dirty limit. Phys. Rev. B 86, 214502 (2012).
Ota, Y. et al. Ambegaokar-Baratoff relations for Josephson critical current in heterojunctions with multigap superconductors. Phys. Rev. B 81, 214511 (2010).
Agterberg, D. F., Demler, E. & Janko, B. Josephson effects between multigap and single-gap superconductors. Phys. Rev. B 66, 214507 (2002).
Wang, D., Lu, H.-Y. & Wang, Q.-H. The finite temperature effect on Josephson junction between an s-wave superconductor and an s±-wave superconductor. Chinese Phys. Lett. 30, 077404 (2013).
Lin, S.-Z. Josephson effect between a two-band superconductor with s++ or s± pairing symmetry and a conventional s-wave superconductor. Phys. Rev. B 86, 014510 (2012).
Linder, J., Sperstad, I. B. & Sudbø, A. 0-π phase shifts in Josephson junctions as a signature for the s±-wave pairing state. Phys. Rev. B 80, 020503 (2009).
Stanev, V. G. & Koshelev, A. E. Anomalous proximity effects at the interface of s– and s±-superconductors. Phys. Rev. B 86, 174515 (2012).
Fernandes, R. M. et al. Iron pnictides and chalcogenides: a new paradigm for superconductivity. Nature 601, 35–44 (2022).
Google Scholar
Randeria, M. T., Feldman, B. E., Drozdov, I. K. & Yazdani, A. Scanning Josephson spectroscopy on the atomic scale. Phys. Rev. B 93, 161115 (2016).
Hamidian, M. H. et al. Detection of a Cooper-pair density wave in Bi2Sr2CaCu2O8+x. Nature 532, 343–347 (2016).
Google Scholar
Cho, D., Bastiaans, K. M., Chatzopoulos, D., Gu, G. D. & Allan, M. P. A strongly inhomogeneous superfluid in an iron-based superconductor. Nature 571, 541–545 (2019).
Google Scholar
Liu, X., Chong, Y. X., Sharma, R. & Davis, J. C. S. Discovery of a Cooper-pair density wave state in a transition-metal dichalcogenide. Science 372, 1447–1452 (2021).
Google Scholar
Stanev, V. & Tešanović, Z. Three-band superconductivity and the order parameter that breaks time-reversal symmetry. Phys. Rev. B 81, 134522 (2010).
Khodas, M. & Chubukov, A. V. Interpocket pairing and gap symmetry in Fe-based superconductors with only electron pockets. Phys. Rev. Lett. 108, 247003 (2012).
Google Scholar
Kang, J., Chubukov, A. V. & Fernandes, R. M. Time-reversal symmetry-breaking nematic superconductivity in FeSe. Phys. Rev. B 98, 064508 (2018).
Google Scholar
Moshchalkov, V. et al. Type-1.5 superconductivity. Phys. Rev. Lett. 102, 117001 (2009).
Google Scholar
Babaev, E., Carlström, J. & Speight, M. Type-1.5 superconducting state from an intrinsic proximity effect in two-band superconductors. Phys. Rev. Lett. 105, 067003 (2010).
Google Scholar
Vakaryuk, V., Stanev, V., Lee, W.-C. & Levchenko, A. Topological defect-phase soliton and the pairing symmetry of a two-band superconductor: role of the proximity effect. Phys. Rev. Lett. 109, 227003 (2012).
Google Scholar
Iguchi, Y. et al. Superconducting vortices carrying a temperature-dependent fraction of the flux quantum. Science 380, 1244–1247 (2023).
Google Scholar
Zheng, Y. et al. Direct observation of quantum vortex fractionalization in multiband superconductors. Preprint at https://arxiv.org/abs/2407.18610 (2024).
Chen, W.-Q., Ma, F., Lu, Z.-Y. & Zhang, F.-C. π junction to probe antiphase s-wave pairing in iron pnictide superconductors. Phys. Rev. Lett. 103, 207001 (2009).
Google Scholar
Liu, X., Chong, Y. X., Sharma, R. & Davis, J. C. S. Atomic-scale visualization of electron fluid flow. Nat. Mater. 20, 1480–1484 (2021).
Google Scholar
Deng, H. et al. Chiral kagome superconductivity modulations with residual Fermi arcs. Nature 632, 775–781 (2024).
Google Scholar
Sprau, P. O. et al. Discovery of orbital-selective Cooper pairing in FeSe. Science 357, 75–80 (2017).
Google Scholar
Ivanchenko, Y. M. & Zil’Berman, L. A. The Josephson effect in small tunnel contacts. Sov. Phys. JETP 28, 1272–1276 (1969).
Naaman, O., Teizer, W. & Dynes, R. C. Fluctuation dominated Josephson tunneling with a scanning tunneling microscope. Phys. Rev. Lett. 87, 097004 (2001).
Google Scholar
Kimura, H., Barber, R. P. Jr., Ono, S., Ando, Y. & Dynes, R. C. Josephson scanning tunneling microscopy: a local and direct probe of the superconducting order parameter. Phys. Rev. B 80, 144506 (2009).
Uhl, M. et al. Multiband Josephson effect in an atomic scale Pb tunnel junction. Phys. Rev. Res. 6, 043233 (2024).
Google Scholar
Carlstrom, J., Babaev, E. & Speight, M. Type-1.5 superconductivity in multiband systems: effects of interband couplings. Phys. Rev. B 83, 174509 (2011).
Grigorishin, K. V. Effective Ginzburg–Landau free energy functional for multi-band isotropic superconductors. Phys. Lett. A 380, 1781–1787 (2016).
Google Scholar
Dong, X., Zhou, F. & Zhao, Z. Electronic and superconducting properties of some FeSe-based single crystals and films grown hydrothermally. Front. Phys. 8, 586182 (2020).