• August 26, 2025
  • Live Match Score
  • 0


  • Zeng, Y. & MacDonald, A. H. Electrically controlled two-dimensional electron-hole fluids. Phys. Rev. B 102, 085154 (2020).

    CAS 

    Google Scholar 

  • Wu, F.-C., Xue, F. & MacDonald, A. H. Theory of two-dimensional spatially indirect equilibrium exciton condensates. Phys. Rev. B 92, 165121 (2015).

    Google Scholar 

  • Qi, R. et al. Thermodynamic behavior of correlated electron-hole fluids in van der Waals heterostructures. Nat. Commun. 14, 8264 (2023).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).

    PubMed 
    CAS 

    Google Scholar 

  • De Palo, S., Rapisarda, F. & Senatore, G. Excitonic condensation in a symmetric electron-hole bilayer. Phys. Rev. Lett. 88, 206401 (2002).

    PubMed 

    Google Scholar 

  • Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).

    PubMed 
    CAS 

    Google Scholar 

  • Liu, X., Watanabe, K., Taniguchi, T., Halperin, B. I. & Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746–750 (2017).

    CAS 

    Google Scholar 

  • Eisenstein, J. P. & MacDonald, A. H. Bose–Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004).

    PubMed 
    CAS 

    Google Scholar 

  • Zhu, X., Littlewood, P. B., Hybertsen, M. S. & Rice, T. M. Exciton condensate in semiconductor quantum well structures. Phys. Rev. Lett. 74, 1633–1636 (1995).

    PubMed 
    CAS 

    Google Scholar 

  • Maezono, R., López Ríos, P., Ogawa, T. & Needs, R. J. Excitons and biexcitons in symmetric electron-hole bilayers. Phys. Rev. Lett. 110, 216407 (2013).

    PubMed 

    Google Scholar 

  • Dai, D. D. & Fu, L. Strong-coupling phases of trions and excitons in electron-hole bilayers at commensurate densities. Phys. Rev. Lett. 132, 196202 (2024).

    PubMed 
    CAS 

    Google Scholar 

  • Qi, R. et al. Electrically controlled interlayer trion fluid in electron-hole bilayers. Preprint at https://arxiv.org/abs/2312.03251 (2023).

  • Nguyen, P. X. et al. A degenerate trion liquid in atomic double layers. Preprint at https://arxiv.org/abs/2312.12571 (2023).

  • Nguyen, P. X. et al. Perfect Coulomb drag in a dipolar excitonic insulator. Science 388, 274–278 (2025).

    PubMed 
    CAS 

    Google Scholar 

  • Qi, R. et al. Perfect Coulomb drag and exciton transport in an excitonic insulator. Science 388, 278–283 (2025).

    PubMed 
    CAS 

    Google Scholar 

  • Liu, X. et al. Crossover between strongly coupled and weakly coupled exciton superfluids. Science 375, 205–209 (2022).

    PubMed 
    CAS 

    Google Scholar 

  • Eisenstein, J. P. Exciton condensation in bilayer quantum Hall systems. Annu. Rev. Condens. Matter Phys. 5, 159–181 (2014).

    CAS 

    Google Scholar 

  • Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751–755 (2017).

    CAS 

    Google Scholar 

  • Croxall, A. F. et al. Anomalous Coulomb drag in electron-hole bilayers. Phys. Rev. Lett. 101, 246801 (2008).

    PubMed 
    CAS 

    Google Scholar 

  • Du, L. et al. Evidence for a topological excitonic insulator in InAs/GaSb bilayers. Nat. Commun. 8, 1971 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, R., Sedrakyan, T. A., Wang, B., Du, L. & Du, R.-R. Excitonic topological order in imbalanced electron–hole bilayers. Nature 619, 57–62 (2023).

    PubMed 
    CAS 

    Google Scholar 

  • Han, Z., Li, T., Zhang, L., Sullivan, G. & Du, R.-R. Anomalous conductance oscillations in the hybridization gap of InAs/GaSb quantum wells. Phys. Rev. Lett. 123, 126803 (2019).

    PubMed 
    CAS 

    Google Scholar 

  • Xiao, D., Liu, C.-X., Samarth, N. & Hu, L.-H. Anomalous quantum oscillations of interacting electron-hole gases in inverted type-II InAs/GaSb quantum wells. Phys. Rev. Lett. 122, 186802 (2019).

    PubMed 
    CAS 

    Google Scholar 

  • Shao, Y. & Dai, X. Quantum oscillations in an excitonic insulating electron-hole bilayer. Phys. Rev. B 109, 155107 (2024).

    CAS 

    Google Scholar 

  • Zou, B., Zeng, Y., MacDonald, A. H. & Strashko, A. Electrical control of two-dimensional electron-hole fluids in the quantum Hall regime. Phys. Rev. B 109, 085416 (2024).

    CAS 

    Google Scholar 

  • Li, L., Sun, K., Kurdak, C. & Allen, J. W. Emergent mystery in the Kondo insulator samarium hexaboride. Nat. Rev. Phys. 2, 463–479 (2020).

    CAS 

    Google Scholar 

  • Pirie, H. et al. Visualizing the atomic-scale origin of metallic behavior in Kondo insulators. Science 379, 1214–1218 (2023).

    PubMed 
    CAS 

    Google Scholar 

  • Shen, H. & Fu, L. Quantum oscillation from in-gap states and a non-Hermitian Landau level problem. Phys. Rev. Lett. 121, 026403 (2018).

    PubMed 
    CAS 

    Google Scholar 

  • Zhang, L., Song, X.-Y. & Wang, F. Quantum oscillation in narrow-gap topological insulators. Phys. Rev. Lett. 116, 046404 (2016).

    PubMed 

    Google Scholar 

  • Knolle, J. & Cooper, N. R. Quantum oscillations without a Fermi surface and the anomalous de Haas-van Alphen effect. Phys. Rev. Lett. 115, 146401 (2015).

    PubMed 

    Google Scholar 

  • Knolle, J. & Cooper, N. R. Excitons in topological Kondo insulators: theory of thermodynamic and transport anomalies in SmB6. Phys. Rev. Lett. 118, 096604 (2017).

    PubMed 

    Google Scholar 

  • Erten, O., Chang, P.-Y., Coleman, P. & Tsvelik, A. M. Skyrme insulators: insulators at the brink of superconductivity. Phys. Rev. Lett. 119, 057603 (2017).

    PubMed 

    Google Scholar 

  • Lee, P. A. Quantum oscillations in the activated conductivity in excitonic insulators: possible application to monolayer WTe2. Phys. Rev. B 103, L041101 (2021).

    CAS 

    Google Scholar 

  • He, W.-Y. & Lee, P. A. Quantum oscillation of thermally activated conductivity in a monolayer WTe2-like excitonic insulator. Phys. Rev. B 104, L041110 (2021).

    CAS 

    Google Scholar 

  • Chowdhury, D., Sodemann, I. & Senthil, T. Mixed-valence insulators with neutral Fermi surfaces. Nat. Commun. 9, 1766 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sodemann, I., Chowdhury, D. & Senthil, T. Quantum oscillations in insulators with neutral Fermi surfaces. Phys. Rev. B 97, 045152 (2018).

    CAS 

    Google Scholar 

  • Li, G. et al. Two-dimensional Fermi surfaces in Kondo insulator SmB6. Science 346, 1208–1212 (2014).

    PubMed 
    CAS 

    Google Scholar 

  • Tan, B. S. et al. Unconventional Fermi surface in an insulating state. Science 349, 287–290 (2015).

    PubMed 
    CAS 

    Google Scholar 

  • Wang, P. et al. Landau quantization and highly mobile fermions in an insulator. Nature 589, 225–229 (2021).

    PubMed 
    CAS 

    Google Scholar 

  • Xiang, Z. et al. Quantum oscillations of electrical resistivity in an insulator. Science 362, 65–69 (2018).

    PubMed 
    CAS 

    Google Scholar 

  • Rikken, G. L. J. A. et al. Two-terminal resistance of quantum Hall devices. Phys. Rev. B 37, 6181–6186 (1988).

    CAS 

    Google Scholar 

  • Moon, K. et al. Spontaneous interlayer coherence in double-layer quantum Hall systems: charged vortices and Kosterlitz-Thouless phase transitions. Phys. Rev. B 51, 5138–5170 (1995).

    CAS 

    Google Scholar 

  • Jungwirth, T., Shukla, S. P., Smrčka, L., Shayegan, M. & MacDonald, A. H. Magnetic anisotropy in quantum Hall ferromagnets. Phys. Rev. Lett. 81, 2328–2331 (1998).

    CAS 

    Google Scholar 

  • Shi, Q. et al. Odd- and even-denominator fractional quantum Hall states in monolayer WSe2. Nat. Nanotechnol. 15, 569–573 (2020).

    PubMed 
    CAS 

    Google Scholar 

  • Larentis, S. et al. Large effective mass and interaction-enhanced Zeeman splitting of K-valley electrons in MoSe2. Phys. Rev. B 97, 201407 (2018).

    CAS 

    Google Scholar 

  • Fenton, E. W. Excitonic insulator in a magnetic field. Phys. Rev. 170, 816–821 (1968).

    Google Scholar 

  • Shoenberg D. Magnetic Oscillations in Metals (Cambridge Univ. Press, 2009).

  • Zhu, J., Li, T., Young, A. F., Shan, J. & Mak, K. F. Quantum oscillations in two-dimensional insulators induced by graphite gates. Phys. Rev. Lett. 127, 247702 (2021).

    PubMed 
    CAS 

    Google Scholar 

  • Zou, B. & MacDonald, A. H. Vortex lattice states of bilayer electron-hole fluids in quantizing magnetic fields. Preprint at https://arxiv.org/abs/2411.08810 (2024).

  • Li, H. et al. Electrode-free anodic oxidation nanolithography of low-dimensional materials. Nano Lett. 18, 8011–8015 (2018).

    PubMed 
    CAS 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *