
Nogués, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).
Google Scholar
Song, C. et al. How to manipulate magnetic states of antiferromagnets. Nanotechnology 29, 112001 (2018).
Google Scholar
Fukami, S., Zhang, C., DuttaGupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nat. Mater. 15, 535–541 (2016).
Google Scholar
Peng, S. et al. Exchange bias switching in an antiferromagnet/ferromagnet bilayer driven by spin–orbit torque. Nat. Electron. 3, 757–764 (2020).
Google Scholar
Kang, J. et al. Current-induced manipulation of exchange bias in IrMn/NiFe bilayer structures. Nat. Commun. 12, 6420 (2021).
Google Scholar
Nayak, A. K. et al. Design of compensated ferrimagnetic Heusler alloys for giant tunable exchange bias. Nat. Mater. 14, 679–684 (2015).
Google Scholar
Maniv, E. et al. Exchange bias due to coupling between coexisting antiferromagnetic and spin-glass orders. Nat. Phys. 17, 525–530 (2021).
Google Scholar
Stiles, M. D. & McMichael, R. D. Model for exchange bias in polycrystalline ferromagnet–antiferromagnet bilayers. Phys. Rev. B 59, 3722–3733 (1999).
Google Scholar
Miltényi, P. et al. Diluted antiferromagnets in exchange bias: proof of the domain state model. Phys. Rev. Lett. 84, 4224–4227 (2000).
Google Scholar
Scholl, A., Liberati, M., Arenholz, E., Ohldag, H. & Stöhr, J. Creation of an antiferromagnetic exchange spring. Phys. Rev. Lett. 92, 247201 (2004).
Google Scholar
Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347–351 (2011).
Google Scholar
Noah, A. et al. Tunable exchange bias in the magnetic Weyl semimetal Co3Sn2S2. Phys. Rev. B 105, 144423 (2022).
Google Scholar
Zheng, G. et al. Gate-tuned interlayer coupling in van der Waals ferromagnet Fe3GeTe2 nanoflakes. Phys. Rev. Lett. 125, 047202 (2020).
Google Scholar
Gweon, H. K. et al. Exchange bias in weakly interlayer-coupled van der Waals magnet Fe3GeTe2. Nano Lett. 21, 1672–1678 (2021).
Google Scholar
Chong, S. K. et al. Intrinsic exchange biased anomalous Hall effect in an uncompensated antiferromagnet MnBi2Te4. Nat. Commun. 15, 2881 (2024).
Google Scholar
Chen, B. et al. Even-odd layer-dependent exchange bias effect in MnBi2Te4 Chern insulator devices. Nano Lett. 24, 8320–8326 (2024).
Google Scholar
Zhu, R. et al. Exchange bias in van der Waals CrCl3/Fe3GeTe2 heterostructures. Nano Lett. 20, 5030–5035 (2020).
Google Scholar
Albarakati, S. et al. Electric control of exchange bias effect in FePS3–Fe5GeTe2 van der Waals heterostructures. Nano Lett. 22, 6166–6172 (2022).
Google Scholar
Ying, Z. et al. Large exchange bias effect and coverage-dependent interfacial coupling in CrI3/MnBi2Te4 van der Waals heterostructures. Nano Lett. 23, 765–771 (2023).
Google Scholar
Xu, X. et al. Ferromagnetic-antiferromagnetic coexisting ground state and exchange bias effects in MnBi4Te7 and MnBi6Te10. Nat. Commun. 13, 7646 (2022).
Google Scholar
Phan, M.-H. et al. Exchange bias and interface-related effects in two-dimensional van der Waals magnetic heterostructures: open questions and perspectives. J. Alloy. Compd. 937, 168375 (2023).
Google Scholar
Song, T. et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science 374, 1140–1144 (2021).
Google Scholar
Li, S. et al. Observation of stacking engineered magnetic phase transitions within moiré supercells of twisted van der Waals magnets. Nat. Commun. 15, 5712 (2024).
Google Scholar
Thiel, L. et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 364, 973–976 (2019).
Google Scholar
Tan, A. K. C. et al. Revealing emergent magnetic charge in an antiferromagnet with diamond quantum magnetometry. Nat. Mater. 23, 205–211 (2024).
Google Scholar
Tschudin, M. A. et al. Imaging nanomagnetism and magnetic phase transitions in atomically thin CrSBr. Nat. Commun. 15, 6005 (2024).
Google Scholar
Palm, M. L. et al. Observation of current whirlpools in graphene at room temperature. Science 384, 465–469 (2024).
Google Scholar
Sass, P. M., Kim, J., Vanderbilt, D., Yan, J. & Wu, W. Robust A-type order and spin–flop transition on the surface of the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. Lett. 125, 037201 (2020).
Google Scholar
Sun, Z. et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 572, 497–501 (2019).
Google Scholar
Zhong, D. et al. Layer-resolved magnetic proximity effect in van der Waals heterostructures. Nat. Nanotechnol. 15, 187–191 (2020).
Google Scholar
Qiu, J.-X. et al. Axion optical induction of antiferromagnetic order. Nat. Mater. 22, 583–590 (2023).
Google Scholar
Calder, S. et al. Magnetic structure and exchange interactions in the layered semiconductor CrPS4. Phys. Rev. B 102, 024408 (2020).
Google Scholar
Peng, Y. et al. Magnetic structure and metamagnetic transitions in the van der Waals antiferromagnet CrPS4. Adv. Mater. 32, 2001200 (2020).
Google Scholar
Son, J. et al. Air-stable and layer-dependent ferromagnetism in atomically thin van der Waals CrPS4. ACS Nano 15, 16904–16912 (2021).
Google Scholar
Wu, F. et al. Gate-controlled magnetotransport and electrostatic modulation of magnetism in 2D magnetic semiconductor CrPS4. Adv. Mater. 35, 2211653 (2023).
Google Scholar
Lee, J. et al. Structural and optical properties of single- and few-layer magnetic semiconductor CrPS4. ACS Nano 11, 10935–10944 (2017).
Google Scholar
Huang, M. et al. Layer-dependent magnetism and spin fluctuations in atomically thin van der Waals magnet CrPS4. Nano Lett. 23, 8099–8105 (2023).
Google Scholar
Zur, Y. et al. Magnetic imaging and domain nucleation in CrSBr down to the 2D limit. Adv. Mater. 35, 2307195 (2023).
Google Scholar
Gao, A. et al. An antiferromagnetic diode effect in even-layered MnBi2Te4. Nat. Electron. 7, 751–759 (2024).
Google Scholar
Zhang, X.-Y. et al. Enhanced magnetization by defect-assisted exciton recombination in atomically thin CrCl3. Phys. Rev. Mater. 8, 104402 (2024).
Google Scholar
Guo, X. et al. Extraordinary phase transition revealed in a van der Waals antiferromagnet. Nat. Commun. 15, 6472 (2024).
Google Scholar
Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).
Google Scholar
Hedrich, N. et al. Nanoscale mechanics of antiferromagnetic domain walls. Nat. Phys. 17, 574–577 (2021).
Google Scholar
Makushko, P. et al. Flexomagnetism and vertically graded Néel temperature of antiferromagnetic Cr2O3 thin films. Nat. Commun. 13, 6745 (2022).
Google Scholar
Wörnle, M. S. et al. Coexistence of Bloch and Néel walls in a collinear antiferromagnet. Phys. Rev. B 103, 094426 (2021).
Google Scholar
Hubert, A. and Schäfer, R. Magnetic Domains: The Analysis of Magnetic Microstructures, 141–142 (Springer, 1998).
Shi, P. et al. Magnetoresistance oscillations in vertical junctions of 2D antiferromagnetic semiconductor CrPS4. Phys. Rev. X 14, 041065 (2024).
Google Scholar
Wang, Z. et al. Determining the phase diagram of atomically thin layered antiferromagnet CrCl3. Nat. Nanotechnol. 14, 1116–1122 (2019).
Google Scholar
Blundell, S. Magnetism in Condensed Matter, 134 (Oxford University Press, 2001).
Beckmann, B., Nowak, U. & Usadel, K. D. Asymmetric reversal modes in ferromagnetic/antiferromagnetic multilayers. Phys. Rev. Lett. 91, 187201 (2003).
Google Scholar
Ambrose, T., Sommer, R. L. & Chien, C. L. Angular dependence of exchange coupling in ferromagnet/antiferromagnet bilayers. Phys. Rev. B 56, 83–86 (1997).
Google Scholar
Xi, H., Kryder, M. H. & White, R. M. Study of the angular-dependent exchange coupling between a ferromagnetic and an antiferromagnetic layer. Appl. Phys. Lett. 74, 2687–2689 (1999).
Google Scholar
Liu, Z. et al. Strong lateral exchange coupling and current-induced switching in single-layer ferrimagnetic films with patterned compensation temperature. Phys. Rev. B 107, L100412 (2023).
Google Scholar
Hadjoudja, A., Garcia-Sanchez, F. & Lopez-Diaz, L. Interlayer coupled domain wall dynamics induced by external magnetic field in synthetic antiferromagnets. J. Phys. D: Appl. Phys. 57, 395006 (2024).
Google Scholar
Yang, S.-H., Ryu, K.-S. & Parkin, S. Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 10, 221–226 (2015).
Google Scholar
Sun, Z. et al. Resolving and routing magnetic polymorphs in a 2D layered antiferromagnet. Nat. Mater. 24, 226–233 (2025).
Google Scholar
Pellet-Mary, C. et al. Lateral exchange bias for Néel-vector control in atomically thin antiferromagnets. Preprint at http://arxiv.org/abs/2503.04922 (2025).
Bud’ko, S. L., Gati, E., Slade, T. J. & Canfield, P. C. Magnetic order in the van der Waals antiferromagnet CrPS4: anisotropic H–T phase diagrams and effects of pressure. Phys. Rev. B 103, 224407 (2021).
Google Scholar
Beg, M., Lang, M. & Fangohr, H. Ubermag: toward more effective micromagnetic workflows. IEEE Trans. Magn. 58, 7300205 (2022).
Google Scholar
Donahue, M. J. and Porter, D. G. OOMMF User’s Guide, Version 1.0, Technical Report (National Institute of Standards and Technology, 1999); https://doi.org/10.6028/NIST.IR.6376
Evans, R. F. L. et al. Atomistic spin model simulations of magnetic nanomaterials. J. Phys. Condens. Matter 26, 103202 (2014).
Google Scholar