• June 13, 2025
  • Live Match Score
  • 0


  • Nogués, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

    Article 

    Google Scholar 

  • Song, C. et al. How to manipulate magnetic states of antiferromagnets. Nanotechnology 29, 112001 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Fukami, S., Zhang, C., DuttaGupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nat. Mater. 15, 535–541 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Peng, S. et al. Exchange bias switching in an antiferromagnet/ferromagnet bilayer driven by spin–orbit torque. Nat. Electron. 3, 757–764 (2020).

    Article 
    CAS 

    Google Scholar 

  • Kang, J. et al. Current-induced manipulation of exchange bias in IrMn/NiFe bilayer structures. Nat. Commun. 12, 6420 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nayak, A. K. et al. Design of compensated ferrimagnetic Heusler alloys for giant tunable exchange bias. Nat. Mater. 14, 679–684 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maniv, E. et al. Exchange bias due to coupling between coexisting antiferromagnetic and spin-glass orders. Nat. Phys. 17, 525–530 (2021).

    Article 
    CAS 

    Google Scholar 

  • Stiles, M. D. & McMichael, R. D. Model for exchange bias in polycrystalline ferromagnet–antiferromagnet bilayers. Phys. Rev. B 59, 3722–3733 (1999).

    Article 
    CAS 

    Google Scholar 

  • Miltényi, P. et al. Diluted antiferromagnets in exchange bias: proof of the domain state model. Phys. Rev. Lett. 84, 4224–4227 (2000).

    Article 
    PubMed 

    Google Scholar 

  • Scholl, A., Liberati, M., Arenholz, E., Ohldag, H. & Stöhr, J. Creation of an antiferromagnetic exchange spring. Phys. Rev. Lett. 92, 247201 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347–351 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Noah, A. et al. Tunable exchange bias in the magnetic Weyl semimetal Co3Sn2S2. Phys. Rev. B 105, 144423 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zheng, G. et al. Gate-tuned interlayer coupling in van der Waals ferromagnet Fe3GeTe2 nanoflakes. Phys. Rev. Lett. 125, 047202 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gweon, H. K. et al. Exchange bias in weakly interlayer-coupled van der Waals magnet Fe3GeTe2. Nano Lett. 21, 1672–1678 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chong, S. K. et al. Intrinsic exchange biased anomalous Hall effect in an uncompensated antiferromagnet MnBi2Te4. Nat. Commun. 15, 2881 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, B. et al. Even-odd layer-dependent exchange bias effect in MnBi2Te4 Chern insulator devices. Nano Lett. 24, 8320–8326 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, R. et al. Exchange bias in van der Waals CrCl3/Fe3GeTe2 heterostructures. Nano Lett. 20, 5030–5035 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Albarakati, S. et al. Electric control of exchange bias effect in FePS3–Fe5GeTe2 van der Waals heterostructures. Nano Lett. 22, 6166–6172 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ying, Z. et al. Large exchange bias effect and coverage-dependent interfacial coupling in CrI3/MnBi2Te4 van der Waals heterostructures. Nano Lett. 23, 765–771 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, X. et al. Ferromagnetic-antiferromagnetic coexisting ground state and exchange bias effects in MnBi4Te7 and MnBi6Te10. Nat. Commun. 13, 7646 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Phan, M.-H. et al. Exchange bias and interface-related effects in two-dimensional van der Waals magnetic heterostructures: open questions and perspectives. J. Alloy. Compd. 937, 168375 (2023).

    Article 
    CAS 

    Google Scholar 

  • Song, T. et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science 374, 1140–1144 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, S. et al. Observation of stacking engineered magnetic phase transitions within moiré supercells of twisted van der Waals magnets. Nat. Commun. 15, 5712 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thiel, L. et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 364, 973–976 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tan, A. K. C. et al. Revealing emergent magnetic charge in an antiferromagnet with diamond quantum magnetometry. Nat. Mater. 23, 205–211 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tschudin, M. A. et al. Imaging nanomagnetism and magnetic phase transitions in atomically thin CrSBr. Nat. Commun. 15, 6005 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Palm, M. L. et al. Observation of current whirlpools in graphene at room temperature. Science 384, 465–469 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sass, P. M., Kim, J., Vanderbilt, D., Yan, J. & Wu, W. Robust A-type order and spin–flop transition on the surface of the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. Lett. 125, 037201 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, Z. et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 572, 497–501 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhong, D. et al. Layer-resolved magnetic proximity effect in van der Waals heterostructures. Nat. Nanotechnol. 15, 187–191 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qiu, J.-X. et al. Axion optical induction of antiferromagnetic order. Nat. Mater. 22, 583–590 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Calder, S. et al. Magnetic structure and exchange interactions in the layered semiconductor CrPS4. Phys. Rev. B 102, 024408 (2020).

    Article 
    CAS 

    Google Scholar 

  • Peng, Y. et al. Magnetic structure and metamagnetic transitions in the van der Waals antiferromagnet CrPS4. Adv. Mater. 32, 2001200 (2020).

    Article 
    CAS 

    Google Scholar 

  • Son, J. et al. Air-stable and layer-dependent ferromagnetism in atomically thin van der Waals CrPS4. ACS Nano 15, 16904–16912 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, F. et al. Gate-controlled magnetotransport and electrostatic modulation of magnetism in 2D magnetic semiconductor CrPS4. Adv. Mater. 35, 2211653 (2023).

    Article 
    CAS 

    Google Scholar 

  • Lee, J. et al. Structural and optical properties of single- and few-layer magnetic semiconductor CrPS4. ACS Nano 11, 10935–10944 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, M. et al. Layer-dependent magnetism and spin fluctuations in atomically thin van der Waals magnet CrPS4. Nano Lett. 23, 8099–8105 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zur, Y. et al. Magnetic imaging and domain nucleation in CrSBr down to the 2D limit. Adv. Mater. 35, 2307195 (2023).

    Article 
    CAS 

    Google Scholar 

  • Gao, A. et al. An antiferromagnetic diode effect in even-layered MnBi2Te4. Nat. Electron. 7, 751–759 (2024).

    Article 
    CAS 

    Google Scholar 

  • Zhang, X.-Y. et al. Enhanced magnetization by defect-assisted exciton recombination in atomically thin CrCl3. Phys. Rev. Mater. 8, 104402 (2024).

    Article 
    CAS 

    Google Scholar 

  • Guo, X. et al. Extraordinary phase transition revealed in a van der Waals antiferromagnet. Nat. Commun. 15, 6472 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hedrich, N. et al. Nanoscale mechanics of antiferromagnetic domain walls. Nat. Phys. 17, 574–577 (2021).

    Article 
    CAS 

    Google Scholar 

  • Makushko, P. et al. Flexomagnetism and vertically graded Néel temperature of antiferromagnetic Cr2O3 thin films. Nat. Commun. 13, 6745 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wörnle, M. S. et al. Coexistence of Bloch and Néel walls in a collinear antiferromagnet. Phys. Rev. B 103, 094426 (2021).

    Article 

    Google Scholar 

  • Hubert, A. and Schäfer, R. Magnetic Domains: The Analysis of Magnetic Microstructures, 141–142 (Springer, 1998).

  • Shi, P. et al. Magnetoresistance oscillations in vertical junctions of 2D antiferromagnetic semiconductor CrPS4. Phys. Rev. X 14, 041065 (2024).

    CAS 

    Google Scholar 

  • Wang, Z. et al. Determining the phase diagram of atomically thin layered antiferromagnet CrCl3. Nat. Nanotechnol. 14, 1116–1122 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Blundell, S. Magnetism in Condensed Matter, 134 (Oxford University Press, 2001).

  • Beckmann, B., Nowak, U. & Usadel, K. D. Asymmetric reversal modes in ferromagnetic/antiferromagnetic multilayers. Phys. Rev. Lett. 91, 187201 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ambrose, T., Sommer, R. L. & Chien, C. L. Angular dependence of exchange coupling in ferromagnet/antiferromagnet bilayers. Phys. Rev. B 56, 83–86 (1997).

    Article 
    CAS 

    Google Scholar 

  • Xi, H., Kryder, M. H. & White, R. M. Study of the angular-dependent exchange coupling between a ferromagnetic and an antiferromagnetic layer. Appl. Phys. Lett. 74, 2687–2689 (1999).

    Article 
    CAS 

    Google Scholar 

  • Liu, Z. et al. Strong lateral exchange coupling and current-induced switching in single-layer ferrimagnetic films with patterned compensation temperature. Phys. Rev. B 107, L100412 (2023).

    Article 
    CAS 

    Google Scholar 

  • Hadjoudja, A., Garcia-Sanchez, F. & Lopez-Diaz, L. Interlayer coupled domain wall dynamics induced by external magnetic field in synthetic antiferromagnets. J. Phys. D: Appl. Phys. 57, 395006 (2024).

    Article 
    CAS 

    Google Scholar 

  • Yang, S.-H., Ryu, K.-S. & Parkin, S. Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 10, 221–226 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, Z. et al. Resolving and routing magnetic polymorphs in a 2D layered antiferromagnet. Nat. Mater. 24, 226–233 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pellet-Mary, C. et al. Lateral exchange bias for Néel-vector control in atomically thin antiferromagnets. Preprint at http://arxiv.org/abs/2503.04922 (2025).

  • Bud’ko, S. L., Gati, E., Slade, T. J. & Canfield, P. C. Magnetic order in the van der Waals antiferromagnet CrPS4: anisotropic H–T phase diagrams and effects of pressure. Phys. Rev. B 103, 224407 (2021).

    Article 

    Google Scholar 

  • Beg, M., Lang, M. & Fangohr, H. Ubermag: toward more effective micromagnetic workflows. IEEE Trans. Magn. 58, 7300205 (2022).

    Article 

    Google Scholar 

  • Donahue, M. J. and Porter, D. G. OOMMF User’s Guide, Version 1.0, Technical Report (National Institute of Standards and Technology, 1999); https://doi.org/10.6028/NIST.IR.6376

  • Evans, R. F. L. et al. Atomistic spin model simulations of magnetic nanomaterials. J. Phys. Condens. Matter 26, 103202 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *