• August 15, 2025
  • Live Match Score
  • 0


  • Ko, H. C. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Gu, L. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581, 278–282 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, W. et al. Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. Nat. Commun. 9, 1417 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, Y. M. et al. Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Jang, J. et al. 3D heterogeneous device arrays for multiplexed sensing platforms using transfer of perovskites. Adv. Mater. 33, 2101093 (2021).

    CAS 

    Google Scholar 

  • Song, J. K. et al. Stretchable colour-sensitive quantum dot nanocomposites for shape-tunable multiplexed phototransistor arrays. Nat. Nanotechnol. 17, 849–856 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, D. et al. Large-scale planar and spherical light-emitting diodes based on arrays of perovskite quantum wires. Nat. Photon. 16, 284–290 (2022).

    CAS 

    Google Scholar 

  • Rich, S. I., Jiang, Z., Fukuda, K. & Someya, T. Well-rounded devices: the fabrication of electronics on curved surfaces—a review. Mater. Horiz. 8, 1926–1958 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Rao, Z. et al. Curvy, shape-adaptive imagers based on printed optoelectronic pixels with a kirigami design. Nat. Electron. 4, 513–521 (2021).

    Google Scholar 

  • Zhang, K. et al. Origami silicon optoelectronics for hemispherical electronic eye systems. Nat. Commun. 8, 1782 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, M. et al. An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array. Nat. Electron. 3, 546–553 (2020).

    Google Scholar 

  • Choi, C. et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 8, 1664 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, Y. et al. Assembly and applications of 3D conformal electronics on curvilinear surfaces. Mater. Horiz. 6, 642–683 (2019).

    CAS 

    Google Scholar 

  • Gao, W., Xu, Z., Han, X. & Pan, C. Recent advances in curved image sensor arrays for bioinspired vision system. Nano Today 42, 101366 (2022).

    Google Scholar 

  • Wessely, M. et al. Sprayable user interfaces: prototyping large-scale interactive surfaces with sensors and displays. In Proc. 2020 CHI Conference on Human Factors in Computing Systems (eds CHI Conference Editorial Board) 1–12 (Association for Computing Machinery, 2020).

  • Toriz-Garcia, J. J. et al. Fabrication of a 3D electrically small antenna using holographic photolithography. J. Micromech. Microeng. 23, 055010 (2013).

    CAS 

    Google Scholar 

  • Carey, T., Jones, C., Le Moal, F., Deganello, D. & Torrisi, F. Spray-coating thin films on three-dimensional surfaces for a semitransparent capacitive-touch device. ACS Appl. Mater. Interfaces 10, 19948–19956 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, J.-G. et al. Highly flexible, stretchable, wearable, patternable and transparent heaters on complex 3D surfaces formed from supersonically sprayed silver nanowires. J. Mater. Chem. A 5, 6677–6685 (2017).

    CAS 

    Google Scholar 

  • Zhang, Y. et al. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat. Rev. Mater. 2, 17019 (2017).

    CAS 

    Google Scholar 

  • Li, S. X. et al. Curved photodetectors based on perovskite microwire arrays via in situ conformal nanoimprinting. Adv. Funct. Mater. 32, 2202277 (2022).

    CAS 

    Google Scholar 

  • Feng, X. et al. Differential perovskite hemispherical photodetector for intelligent imaging and location tracking. Nat. Commun. 15, 577 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feng, X. et al. Spray-coated perovskite hemispherical photodetector featuring narrow-band and wide-angle imaging. Nat. Commun. 13, 6106 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, H., Moon, J., Lee, K. & Kanicki, J. 3D printed masks and transfer stamping process to enable the fabrication of the hemispherical organic photodiodes. Adv. Mater. Technol. 2, 1700090 (2017).

    Google Scholar 

  • Kelso, M. V. et al. Spin coating epitaxial films. Science 364, 166–169 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Shi, G. et al. Manipulating solvent fluidic dynamics for large-area perovskite film-formation and white light-emitting diodes. Nat. Commun. 15, 1066 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raga, S. R., Ono, L. K. & Qi, Y. Rapid perovskite formation by CH3NH2 gas-induced intercalation and reaction of PbI2. J. Mater. Chem. A 4, 2494–2500 (2016).

    CAS 

    Google Scholar 

  • Singh, A. et al. Methylamine gas treatment affords improving semitransparency, efficiency, and stability of CH3NH3PbBr3‐based perovskite solar cells. Sol. RRL 5, 2100277 (2021).

    CAS 

    Google Scholar 

  • Mao, J. et al. Novel direct nanopatterning approach to fabricate periodically nanostructured perovskite for optoelectronic applications. Adv. Funct. Mater. 27, 1606525 (2017).

    Google Scholar 

  • Jeong, B. et al. Solvent-assisted gel printing for micropatterning thin organic-inorganic hybrid perovskite films. ACS Nano 10, 9026–9035 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, L. et al. Wafer-scale single-crystal perovskite patterned thin films based on geometrically-confined lateral crystal growth. Nat. Commun. 8, 15882 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, Z. et al. Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew. Chem. Int. Ed. 54, 9705–9709 (2015).

    CAS 

    Google Scholar 

  • Fan, H. et al. Methylamine-assisted growth of uniaxial-oriented perovskite thin films with millimeter-sized grains. Nat. Commun. 11, 5402 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, Y. et al. Self-powered perovskite photon-counting detectors. Nature 616, 712–718 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feng, X., Tan, M., Li, M., Wei, H. & Yang, B. Polyhydroxy ester stabilized perovskite for low noise and large linear dynamic range of self-powered photodetectors. Nano Lett. 21, 1500–1507 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, M., Gao, W., Cao, F. & Li, L. Ethylamine iodide additive enables solid-to-solid transformed highly oriented perovskite for excellent photodetectors. Adv. Mater. 34, e2108569 (2022).

    PubMed 

    Google Scholar 

  • Kim, J. H. et al. Thickness-insensitive properties of α-MoO3 nanosheets by weak interlayer coupling. Nano Lett. 19, 8868–8876 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, D. et al. Impact of ultrathin C60 on perovskite photovoltaic devices. ACS Nano 12, 876–883 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, C. et al. Ultra-thin MoOx as cathode buffer layer for the improvement of all-inorganic CsPbIBr2 perovskite solar cells. Nano Energy 41, 75–83 (2017).

    CAS 

    Google Scholar 

  • He, Z. et al. Perovskite retinomorphic image sensor for embodied intelligent vision. Sci. Adv. 11, eads2834 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, J. et al. Avian eye–inspired perovskite artificial vision system for foveated and multispectral imaging. Sci. Robot. 9, eadk6903 (2024).

    PubMed 

    Google Scholar 

  • Wang, C. et al. Strain-insensitive viscoelastic perovskite film for intrinsically stretchable neuromorphic vision-adaptive transistors. Nat. Commun. 15, 3123 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *