• July 10, 2025
  • Live Match Score
  • 0


  • Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116, 11220–11289 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kahn, J. S. & Gang, O. Designer nanomaterials through programmable assembly. Angew. Chem. Int. Ed. 61, e202105678 (2022).

    Article 
    CAS 

    Google Scholar 

  • Rogers, W. B., Shih, W. M. & Manoharan, V. N. Using DNA to program the self-assembly of colloidal nanoparticles and microparticles. Nat. Rev. Mater. 1, 16008 (2016).

    Article 
    CAS 

    Google Scholar 

  • Dijkstra, M. & Luijten, E. From predictive modelling to machine learning and reverse engineering of colloidal self-assembly. Nat. Mater. 20, 762–773 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Geng, Y., van Anders, G., Dodd Paul, M., Dshemuchadse, J. & Glotzer Sharon, C. Engineering entropy for the inverse design of colloidal crystals from hard shapes. Sci. Adv. 5, eaaw0514 (2019).

  • Vo, T. & Glotzer Sharon, C. A theory of entropic bonding. Proc. Natl Acad. Sci. USA 119, e2116414119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Waltmann, T., Waltmann, C., Horst, N. & Travesset, A. Many body effects and icosahedral order in superlattice self-assembly. J. Am. Chem. Soc. 140, 8236–8245 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Neophytou, A., Chakrabarti, D. & Sciortino, F. Facile self-assembly of colloidal diamond from tetrahedral patchy particles via ring selection. Proc. Natl Acad. Sci. USA 118, e2109776118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jacobs William, M., Reinhardt, A. & Frenkel, D. Rational design of self-assembly pathways for complex multicomponent structures. Proc. Natl Acad. Sci. USA 112, 6313–6318 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Piñeros, W. D., Lindquist, B. A., Jadrich, R. B. & Truskett, T. M. Inverse design of multicomponent assemblies. J. Chem. Phys. 148, 104509 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Chen, D., Zhang, G. & Torquato, S. Inverse design of colloidal crystals via optimized patchy interactions. J. Phys. Chem. B 122, 8462–8468 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Russo, J. et al. SAT-assembly: a new approach for designing self-assembling systems. J. Phys. Condens. Matter https://doi.org/10.1088/1361-648X/ac5479 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Coli, G. M., Boattini, E., Filion, L. & Dijkstra, M. Inverse design of soft materials via a deep learning-based evolutionary strategy. Sci. Adv. 8, eabj6731 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, H. et al. Inverse design of a pyrochlore lattice of DNA origami through model-driven experiments. Science 384, 776–781 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lakes, R. Materials with structural hierarchy. Nature 361, 511–515 (1993).

    Article 

    Google Scholar 

  • Meza Lucas, R. et al. Resilient 3D hierarchical architected metamaterials. Proc. Natl Acad. Sci. USA 112, 11502–11507 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koay, N. et al. Hierarchical structural control of visual properties in self-assembled photonic-plasmonic pigments. Opt. Express 22, 27750–27768 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Michelson, A., Flanagan, T. J., Lee, S.-W. & Gang, O. High-strength, lightweight nano-architected silica. Cell Rep. Phys. Sci. 4, 101475 (2023).

    Article 
    CAS 

    Google Scholar 

  • Trogadas, P., Nigra, M. M. & Coppens, M.-O. Nature-inspired optimization of hierarchical porous media for catalytic and separation processes. N. J. Chem. 40, 4016–4026 (2016).

    Article 
    CAS 

    Google Scholar 

  • Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Camazine, S. et al. Self-Organization in Biological Systems (Princeton Univ. Press, 2020).

  • Ke, Y., Ong Luvena, L., Shih William, M. & Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, W., Halverson, J., Tian, Y., Tkachenko, A. V. & Gang, O. Self-organized architectures from assorted DNA-framed nanoparticles. Nat. Chem. 8, 867–873 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hayakawa, D., Videbæk, T. E., Grason, G. M. & Rogers, W. B. Symmetry-guided inverse design of self-assembling multiscale DNA origami tilings. ACS Nano 18, 19169–19178 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wickham, S. F. J. et al. Complex multicomponent patterns rendered on a 3D DNA-barrel pegboard. Nat. Commun. 11, 5768 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vo, T. et al. Stoichiometric control of DNA-grafted colloid self-assembly. Proc. Natl Acad. Sci. USA 112, 4982–4987 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, L., Li, Z., Li, Y. & Mao, C. Rational design and self-assembly of two-dimensional, dodecagonal DNA quasicrystals. J. Am. Chem. Soc. 141, 4248–4251 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Noya, E. G., Wong, C. K., Llombart, P. & Doye, J. P. K. How to design an icosahedral quasicrystal through directional bonding. Nature 596, 367–371 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tian, Y. et al. Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels. Nat. Mater. 19, 789–796 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, Z. et al. Engineering organization of DNA nano-chambers through dimensionally controlled and multi-sequence encoded differentiated bonds. J. Am. Chem. Soc. 142, 17531–17542 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, W. et al. Diamond family of nanoparticle superlattices. Science 351, 582–586 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patra, N. & Tkachenko, A. V. Programmable self-assembly of diamond polymorphs from chromatic patchy particles. Phys. Rev. E 98, 032611 (2018).

    Article 
    CAS 

    Google Scholar 

  • Tkachenko, A. V. Theory of programmable hierarchic self-assembly. Phys. Rev. Lett. 106, 255501 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, T. et al. 3D DNA origami crystals. Adv. Mater. 30, 1800273 (2018).

    Article 

    Google Scholar 

  • Wang, S.-T. et al. Designed and biologically active protein lattices. Nat. Commun. 12, 3702 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, W. et al. Space-tiled colloidal crystals from DNA-forced shape-complementary polyhedra pairing. Science 383, 312–319 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Adhikari, S. et al. Controlling the self-assembly of DNA origami octahedra via manipulation of inter-vertex interactions. J. Am. Chem. Soc. 145, 19578–19587 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shani, L. et al. DNA-assembled superconducting 3D nanoscale architectures. Nat. Commun. 11, 5697 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Michelson, A. et al. Three-dimensional nanoscale metal, metal oxide, and semiconductor frameworks through DNA-programmable assembly and templating. Sci. Adv. 10, eadl0604 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Majewski, P. W. et al. Resilient three-dimensional ordered architectures assembled from nanoparticles by DNA. Sci. Adv. 7, eabf0617 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ji, M. et al. A universal way to enrich the nanoparticle lattices with polychrome DNA origami ‘homologs’’. Sci. Adv. 8, eadc9755 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jorgenson, T. D., Mohammed, A. M., Agrawal, D. K. & Schulman, R. Self-assembly of hierarchical DNA nanotube architectures with well-defined geometries. ACS Nano 11, 1927–1936 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schreiber, R. et al. Chiral plasmonic DNA nanostructures with switchable circular dichroism. Nat. Commun. 4, 2948 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Liu, N. & Liedl, T. DNA-assembled advanced plasmonic architectures. Chem. Rev. 118, 3032–3053 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cecconello, A. et al. DNA scaffolds for the dictated assembly of left-/right-handed plasmonic Au NP helices with programmed chiro-optical properties. J. Am. Chem. Soc. 138, 9895–9901 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Michelson, A., Zhang, H., Xiang, S. & Gang, O. Engineered silicon carbide three-dimensional frameworks through DNA-prescribed assembly. Nano Lett. 21, 1863–1870 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kogelnik, H. & Shank, C. Stimulated emission in a periodic structure. Appl. Phys. Lett. 18, 152–154 (1971).

    Article 
    CAS 

    Google Scholar 

  • Liang, W., Huang, Y., Xu, Y., Lee, R. K. & Yariv, A. Highly sensitive fiber Bragg grating refractive index sensors. Appl. Phys. Lett. 86, 151122 (2005).

    Article 

    Google Scholar 

  • Chen, Y.-J., Cain, J. D., Stanev, T. K., Dravid, V. P. & Stern, N. P. Valley-polarized exciton–polaritons in a monolayer semiconductor. Nat. Photon. 11, 431–435 (2017).

    Article 
    CAS 

    Google Scholar 

  • Michelson, A. et al. Scalable fabrication of chip-integrated 3D-nanostructured electronic devices via DNA-programmable assembly. Sci. Adv. 11, eadt5620 (2025).


  • Leave a Reply

    Your email address will not be published. Required fields are marked *