
Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116, 11220–11289 (2016).
Google Scholar
Kahn, J. S. & Gang, O. Designer nanomaterials through programmable assembly. Angew. Chem. Int. Ed. 61, e202105678 (2022).
Google Scholar
Rogers, W. B., Shih, W. M. & Manoharan, V. N. Using DNA to program the self-assembly of colloidal nanoparticles and microparticles. Nat. Rev. Mater. 1, 16008 (2016).
Google Scholar
Dijkstra, M. & Luijten, E. From predictive modelling to machine learning and reverse engineering of colloidal self-assembly. Nat. Mater. 20, 762–773 (2021).
Google Scholar
Geng, Y., van Anders, G., Dodd Paul, M., Dshemuchadse, J. & Glotzer Sharon, C. Engineering entropy for the inverse design of colloidal crystals from hard shapes. Sci. Adv. 5, eaaw0514 (2019).
Vo, T. & Glotzer Sharon, C. A theory of entropic bonding. Proc. Natl Acad. Sci. USA 119, e2116414119 (2022).
Google Scholar
Waltmann, T., Waltmann, C., Horst, N. & Travesset, A. Many body effects and icosahedral order in superlattice self-assembly. J. Am. Chem. Soc. 140, 8236–8245 (2018).
Google Scholar
Neophytou, A., Chakrabarti, D. & Sciortino, F. Facile self-assembly of colloidal diamond from tetrahedral patchy particles via ring selection. Proc. Natl Acad. Sci. USA 118, e2109776118 (2021).
Google Scholar
Jacobs William, M., Reinhardt, A. & Frenkel, D. Rational design of self-assembly pathways for complex multicomponent structures. Proc. Natl Acad. Sci. USA 112, 6313–6318 (2015).
Google Scholar
Piñeros, W. D., Lindquist, B. A., Jadrich, R. B. & Truskett, T. M. Inverse design of multicomponent assemblies. J. Chem. Phys. 148, 104509 (2018).
Google Scholar
Chen, D., Zhang, G. & Torquato, S. Inverse design of colloidal crystals via optimized patchy interactions. J. Phys. Chem. B 122, 8462–8468 (2018).
Google Scholar
Russo, J. et al. SAT-assembly: a new approach for designing self-assembling systems. J. Phys. Condens. Matter https://doi.org/10.1088/1361-648X/ac5479 (2022).
Google Scholar
Coli, G. M., Boattini, E., Filion, L. & Dijkstra, M. Inverse design of soft materials via a deep learning-based evolutionary strategy. Sci. Adv. 8, eabj6731 (2022).
Google Scholar
Liu, H. et al. Inverse design of a pyrochlore lattice of DNA origami through model-driven experiments. Science 384, 776–781 (2024).
Google Scholar
Lakes, R. Materials with structural hierarchy. Nature 361, 511–515 (1993).
Google Scholar
Meza Lucas, R. et al. Resilient 3D hierarchical architected metamaterials. Proc. Natl Acad. Sci. USA 112, 11502–11507 (2015).
Google Scholar
Koay, N. et al. Hierarchical structural control of visual properties in self-assembled photonic-plasmonic pigments. Opt. Express 22, 27750–27768 (2014).
Google Scholar
Michelson, A., Flanagan, T. J., Lee, S.-W. & Gang, O. High-strength, lightweight nano-architected silica. Cell Rep. Phys. Sci. 4, 101475 (2023).
Google Scholar
Trogadas, P., Nigra, M. M. & Coppens, M.-O. Nature-inspired optimization of hierarchical porous media for catalytic and separation processes. N. J. Chem. 40, 4016–4026 (2016).
Google Scholar
Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015).
Google Scholar
Camazine, S. et al. Self-Organization in Biological Systems (Princeton Univ. Press, 2020).
Ke, Y., Ong Luvena, L., Shih William, M. & Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012).
Google Scholar
Liu, W., Halverson, J., Tian, Y., Tkachenko, A. V. & Gang, O. Self-organized architectures from assorted DNA-framed nanoparticles. Nat. Chem. 8, 867–873 (2016).
Google Scholar
Hayakawa, D., Videbæk, T. E., Grason, G. M. & Rogers, W. B. Symmetry-guided inverse design of self-assembling multiscale DNA origami tilings. ACS Nano 18, 19169–19178 (2024).
Google Scholar
Wickham, S. F. J. et al. Complex multicomponent patterns rendered on a 3D DNA-barrel pegboard. Nat. Commun. 11, 5768 (2020).
Google Scholar
Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).
Google Scholar
Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).
Google Scholar
Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).
Google Scholar
Vo, T. et al. Stoichiometric control of DNA-grafted colloid self-assembly. Proc. Natl Acad. Sci. USA 112, 4982–4987 (2015).
Google Scholar
Liu, L., Li, Z., Li, Y. & Mao, C. Rational design and self-assembly of two-dimensional, dodecagonal DNA quasicrystals. J. Am. Chem. Soc. 141, 4248–4251 (2019).
Google Scholar
Noya, E. G., Wong, C. K., Llombart, P. & Doye, J. P. K. How to design an icosahedral quasicrystal through directional bonding. Nature 596, 367–371 (2021).
Google Scholar
Tian, Y. et al. Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels. Nat. Mater. 19, 789–796 (2020).
Google Scholar
Lin, Z. et al. Engineering organization of DNA nano-chambers through dimensionally controlled and multi-sequence encoded differentiated bonds. J. Am. Chem. Soc. 142, 17531–17542 (2020).
Google Scholar
Liu, W. et al. Diamond family of nanoparticle superlattices. Science 351, 582–586 (2016).
Google Scholar
Patra, N. & Tkachenko, A. V. Programmable self-assembly of diamond polymorphs from chromatic patchy particles. Phys. Rev. E 98, 032611 (2018).
Google Scholar
Tkachenko, A. V. Theory of programmable hierarchic self-assembly. Phys. Rev. Lett. 106, 255501 (2011).
Google Scholar
Zhang, T. et al. 3D DNA origami crystals. Adv. Mater. 30, 1800273 (2018).
Google Scholar
Wang, S.-T. et al. Designed and biologically active protein lattices. Nat. Commun. 12, 3702 (2021).
Google Scholar
Zhou, W. et al. Space-tiled colloidal crystals from DNA-forced shape-complementary polyhedra pairing. Science 383, 312–319 (2024).
Google Scholar
Adhikari, S. et al. Controlling the self-assembly of DNA origami octahedra via manipulation of inter-vertex interactions. J. Am. Chem. Soc. 145, 19578–19587 (2023).
Google Scholar
Shani, L. et al. DNA-assembled superconducting 3D nanoscale architectures. Nat. Commun. 11, 5697 (2020).
Google Scholar
Michelson, A. et al. Three-dimensional nanoscale metal, metal oxide, and semiconductor frameworks through DNA-programmable assembly and templating. Sci. Adv. 10, eadl0604 (2024).
Google Scholar
Majewski, P. W. et al. Resilient three-dimensional ordered architectures assembled from nanoparticles by DNA. Sci. Adv. 7, eabf0617 (2021).
Google Scholar
Ji, M. et al. A universal way to enrich the nanoparticle lattices with polychrome DNA origami ‘homologs’’. Sci. Adv. 8, eadc9755 (2022).
Google Scholar
Jorgenson, T. D., Mohammed, A. M., Agrawal, D. K. & Schulman, R. Self-assembly of hierarchical DNA nanotube architectures with well-defined geometries. ACS Nano 11, 1927–1936 (2017).
Google Scholar
Schreiber, R. et al. Chiral plasmonic DNA nanostructures with switchable circular dichroism. Nat. Commun. 4, 2948 (2013).
Google Scholar
Liu, N. & Liedl, T. DNA-assembled advanced plasmonic architectures. Chem. Rev. 118, 3032–3053 (2018).
Google Scholar
Cecconello, A. et al. DNA scaffolds for the dictated assembly of left-/right-handed plasmonic Au NP helices with programmed chiro-optical properties. J. Am. Chem. Soc. 138, 9895–9901 (2016).
Google Scholar
Michelson, A., Zhang, H., Xiang, S. & Gang, O. Engineered silicon carbide three-dimensional frameworks through DNA-prescribed assembly. Nano Lett. 21, 1863–1870 (2021).
Google Scholar
Kogelnik, H. & Shank, C. Stimulated emission in a periodic structure. Appl. Phys. Lett. 18, 152–154 (1971).
Google Scholar
Liang, W., Huang, Y., Xu, Y., Lee, R. K. & Yariv, A. Highly sensitive fiber Bragg grating refractive index sensors. Appl. Phys. Lett. 86, 151122 (2005).
Google Scholar
Chen, Y.-J., Cain, J. D., Stanev, T. K., Dravid, V. P. & Stern, N. P. Valley-polarized exciton–polaritons in a monolayer semiconductor. Nat. Photon. 11, 431–435 (2017).
Google Scholar
Michelson, A. et al. Scalable fabrication of chip-integrated 3D-nanostructured electronic devices via DNA-programmable assembly. Sci. Adv. 11, eadt5620 (2025).