• June 24, 2025
  • Live Match Score
  • 0


  • Jiang, Q. et al. Towards linking lab and field lifetimes of perovskite solar cells. Nature 623, 313–318 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, S. et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632, 536–542 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Wang, X. et al. Regulating phase homogeneity by self-assembled molecules for enhanced efficiency and stability of inverted perovskite solar cells. Nat. Photon. https://doi.org/10.1038/s41566-024-01531-x (2024).

  • Chen, H. et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384, 189–193 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tan, Q. et al. Inverted perovskite solar cells using dimethylacridine-based dopants. Nature https://doi.org/10.1038/s41586-023-06207-0 (2023).

  • Azmi, R. et al. Double-side 2D/3D heterojunctions for inverted perovskite solar cells. Nature 628, 93–98 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yu, S. et al. Homogenized NiOx nanoparticles for improved hole transport in inverted perovskite solar cells. Science 382, 1399–1404 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, C. et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 379, 690–694 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, X. et al. Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells. Nat. Energy 8, 462–472 (2023).

    Article 
    CAS 

    Google Scholar 

  • Bardecker, J. A. et al. Self-assembled electroactive phosphonic acids on ITO: maximizing hole-injection in polymer light-emitting diodes. Adv. Funct. Mater. 18, 3964–3971 (2008).

    Article 
    CAS 

    Google Scholar 

  • Zhao, K. et al. peri-Fused polyaromatic molecular contacts for perovskite solar cells. Nature 632, 301–306 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Park, S. M. et al. Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 624, 289–294 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, Y., Luan, X., Han, L. & Wang, Y. Post-assembled alkylphosphonic acids for efficient and stable inverted perovskite solar cells. Adv. Funct. Mater. 34, 2405646 (2024).

    Article 
    CAS 

    Google Scholar 

  • Aydin, E. et al. Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature 623, 732–738 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, Y.-H. et al. Bandgap-universal passivation enables stable perovskite solar cells with low photovoltage loss. Science 384, 767–775 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meng, H. et al. Inhibition of halide oxidation and deprotonation of organic cations with dimethylammonium formate for air-processed p–i–n perovskite solar cells. Nat. Energy 9, 536–547 (2024).

    Article 
    CAS 

    Google Scholar 

  • Xu, W. et al. Multifunctional entinostat enhances the mechanical robustness and efficiency of flexible perovskite solar cells and minimodules. Nat. Photon. 18, 379–387 (2024).

    Article 
    CAS 

    Google Scholar 

  • Chen, X. et al. Minimizing the buried interfacial energy loss using a fluorine-substituted small molecule for 25.92%-efficiency and stable inverted perovskite solar cells. Energy Environ. Sci. 17, 7342–7354 (2024).

    Article 
    CAS 

    Google Scholar 

  • Wang, W.-T. et al. Water- and heat-activated dynamic passivation for perovskite photovoltaics. Nature 632, 294–300 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, H. et al. Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells. Science 383, 1236–1240 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, M. et al. Reconstruction of the indium tin oxide surface enhances the adsorption of high-density self-assembled monolayer for perovskite/silicon tandem solar cells. Adv. Funct. Mater. 33, 2304708 (2023).

    Article 
    CAS 

    Google Scholar 

  • Armstrong, N. R. et al. Interface modification of ITO thin films: organic photovoltaic cells. Thin Solid Films 445, 342–352 (2003).

    Article 
    CAS 

    Google Scholar 

  • Donley, C. L. et al. Characterization of indium−tin oxide interfaces using X-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions. Langmuir 18, 450–457 (2002).

    Article 
    CAS 

    Google Scholar 

  • Sun, J. et al. NiO-seeded self-assembled monolayers as highly hole-selective passivating contacts for efficient inverted perovskite solar cells. Sol. RRL 5, 2100663 (2021).

    Article 
    CAS 

    Google Scholar 

  • Hotchkiss, P. J. et al. The modification of indium tin oxide with phosphonic acids: mechanism of binding, tuning of surface properties, and potential for use in organic electronic applications. Acc. Chem. Res. 45, 337–346 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Donley, C. et al. Characterization of indium−tin oxide interfaces using X-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions. Langmuir 18, 450–457 (2002).

    Article 
    CAS 

    Google Scholar 

  • Wei, Z. et al. Steering electron–hole migration pathways using oxygen vacancies in tungsten oxides to enhance their photocatalytic oxygen evolution performance. Angew. Chem. Int. Ed. 60, 8236–8242 (2021).

    Article 
    CAS 

    Google Scholar 

  • Liu, J. et al. Electron injection and defect passivation for high-efficiency mesoporous perovskite solar cells. Science 383, 1198–1204 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vioux, A., Le Bideau, J., Mutin, P. H. & Leclercq, D. in New Aspects in Phosphorus Chemistry IV (ed. Majoral, J.-P.) 145–174 (Springer, 2004).

  • Phung, N. et al. Enhanced self-assembled monolayer surface coverage by ALD NiO in p-i-n perovskite solar cells. ACS Appl. Mater. Interfaces 14, 2166–2176 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Luo, C. et al. Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat. Photon. 17, 856–864 (2023).

    Article 
    CAS 

    Google Scholar 

  • Luo, C., Zhao, Y., Wang, X., Gao, F. & Zhao, Q. Self-induced type-I band alignment at surface grain boundaries for highly efficient and stable perovskite solar cells. Adv. Mater. 33, 2103231 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ugur, E. et al. Carrier extraction from perovskite to polymeric charge transport layers probed by ultrafast transient absorption spectroscopy. J. Phys. Chem. Lett. 10, 6921–6928 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ihly, R. et al. Efficient charge extraction and slow recombination in organic–inorganic perovskites capped with semiconducting single-walled carbon nanotubes. Energ. Environ. Sci. 9, 1439–1449 (2016).

    Article 
    CAS 

    Google Scholar 

  • Leng, J., Liu, J., Zhang, J. & Jin, S. Decoupling interfacial charge transfer from bulk diffusion unravels its intrinsic role for efficient charge extraction in perovskite solar cells. J. Phys. Chem. Lett. 7, 5056–5061 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, C., Zhang, N. & Gao, P. Lessons learned: how to report XPS data incorrectly about lead-halide perovskites. Mater. Chem. Front. 7, 3797–3802 (2023).

    Article 
    CAS 

    Google Scholar 

  • Liu, C. et al. Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science 382, 810–815 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Luo, L. et al. Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance. Nat. Energy 8, 294–303 (2023).

    CAS 

    Google Scholar 

  • Gao, D. et al. Long-term stability in perovskite solar cells through atomic layer deposition of tin oxide. Science 386, 187–192 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Z. et al. Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science 382, 284–289 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, H. et al. In situ energetics modulation enables high-efficiency and stable inverted perovskite solar cells. Nat. Photon. https://doi.org/10.1038/s41566-024-01542-8 (2024).

  • Ahsani, M. & Yegani, R. Study on the fouling behavior of silica nanocomposite modified polypropylene membrane in purification of collagen protein. Chem. Eng. Res. Des. 102, 261–273 (2015).

    Article 
    CAS 

    Google Scholar 

  • Koh, K.-S., Chin, J., Chia, J. & Chiang, C.-L. Quantitative studies on PDMS-PDMS interface bonding with Piranha solution and its swelling effect. Micromachines 3, 427–441 (2012).

    Article 

    Google Scholar 

  • Al-Gharabli, S., Kujawa, J., Mavukkandy, M. O. & Arafat, H. A. Functional groups docking on PVDF membranes: novel Piranha approach. Eur. Polym. J. 96, 414–428 (2017).

    Article 
    CAS 

    Google Scholar 

  • Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article 

    Google Scholar 

  • Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).

    Article 
    CAS 

    Google Scholar 

  • Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ye, X. et al. Quantum chemical calculations for the H free radical chemisorption with different chain models during oil shale pyrolysis. Fuel 290, 119999 (2021).

    Article 
    CAS 

    Google Scholar 

  • VandeVondele, J. et al. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    Article 
    CAS 

    Google Scholar 

  • Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package—Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article 
    PubMed 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *