
Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021).
Google Scholar
Wu, Y. et al. Manipulating polaritons at the extreme scale in van der Waals materials. Nat. Rev. Phys. 4, 578–594 (2022).
Guo, X. et al. Polaritons in van der Waals heterostructures. Adv. Mater. 35, 2201856 (2022).
Hu, H. et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nat. Commun. 7, 12334 (2016).
Google Scholar
Hu, H. et al. Gas identification with graphene plasmons. Nat. Commun. 10, 1131 (2019).
Google Scholar
Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).
Google Scholar
Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).
Google Scholar
Taboada-Gutiérrez, J. et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat. Mater. 19, 964–968 (2020).
Google Scholar
Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).
Google Scholar
Wang, C. et al. Van der Waals thin films of WTe2 for natural hyperbolic plasmonic surfaces. Nat. Commun. 11, 1158 (2020).
Google Scholar
Ni, X. et al. Observation of directional leaky polaritons at anisotropic crystal interfaces. Nat. Commun. 14, 2845 (2023).
Google Scholar
Teng, H. et al. Steering and cloaking of hyperbolic polaritons at deep-subwavelength scales. Nat. Commun. 15, 4463 (2024).
Google Scholar
Ma, W. et al. Ghost hyperbolic surface polaritons in bulk anisotropic crystals. Nature 596, 362–366 (2021).
Google Scholar
Passler, N. C. et al. Hyperbolic shear polaritons in low-symmetry crystals. Nature 602, 595–600 (2022).
Google Scholar
Hu, G. et al. Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal. Nat. Nanotechnol. 18, 64–70 (2023).
Google Scholar
Hu, H. et al. Gate-tunable negative refraction of mid-infrared polaritons. Science 379, 558–561 (2023).
Google Scholar
Sternbach, A. et al. Negative refraction in hyperbolic hetero-bicrystals. Science 379, 555–557 (2023).
Google Scholar
Álvarez-Pérez, G. et al. Negative reflection of nanoscale-confined polaritons in a low-loss natural medium. Sci. Adv. 8, eabp8486 (2022).
Google Scholar
Zhang, T., Zheng, C., Chen, Z. N. & Qiu, C. W. Negative reflection and negative refraction in biaxial van der Waals materials. Nano Lett. 22, 5607–5614 (2022).
Google Scholar
Duan, J. et al. Planar refraction and lensing of highly confined polaritons in anisotropic media. Nat. Commun. 12, 4325 (2021).
Google Scholar
Zhang, Q. et al. Unidirectionally excited phonon polaritons in high-symmetry orthorhombic crystals. Sci. Adv. 8, eabn9774 (2022).
Google Scholar
Moccia, M., Castaldi, G., Alù, A. & Galdi, V. Leaky waves in flatland. Adv. Opt. Mater. 12, 2203121 (2024).
Google Scholar
Monticone, F. & Alu, A. Leaky-wave theory, techniques, and applications: from microwaves to visible frequencies. Proc. IEEE 103, 793–821 (2015).
Karl, N. J., McKinney, R. W., Monnai, Y., Mendis, R. & Mittleman, D. M. Frequency-division multiplexing in the terahertz range using a leaky-wave antenna. Nat. Photon. 9, 717–720 (2015).
Google Scholar
Matsumoto, H., Watanabe, I., Kasamatsu, A. & Monnai, Y. Integrated terahertz radar based on leaky-wave coherence tomography. Nat. Electron. 3, 122–129 (2020).
Huang, H. et al. Leaky-wave metasurfaces for integrated photonics. Nat. Nanotechnol. 18, 580–588 (2023).
Google Scholar
Kong, G. S., Ma, H. F., Cai, B. G. & Cui, T. J. Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide. Sci. Rep. 6, 29600 (2016).
Google Scholar
Alù, A., Bilotti, F., Engheta, N. & Vegni, L. Subwavelength planar leaky-wave components with metamaterial bilayers. IEEE Trans. Antennas Propag. 55, 882–891 (2007).
Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).
Google Scholar
Chen, M. et al. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater. 19, 1307–1311 (2020).
Google Scholar
Duan, J. et al. Twisted nano-optics: manipulating light at the nanoscale with twisted phonon polaritonic slabs. Nano Lett. 20, 5323–5329 (2020).
Google Scholar
Zheng, Z. et al. Phonon polaritons in twisted double-layers of hyperbolic van der Waals crystals. Nano Lett. 20, 5301–5308 (2020).
Google Scholar
Liu, F. et al. Integrated Cherenkov radiation emitter eliminating the electron velocity threshold. Nat. Photon. 11, 289–292 (2017).
Lin, X. et al. Controlling Cherenkov angles with resonance transition radiation. Nat. Phys. 14, 816–821 (2018).
Google Scholar
Xue, S., Zeng, Y., Bao, Q., Zhu, S. & Chen, H. Tunable Cherenkov radiation based on a van der Waals semiconductor α-MoO3 and graphene hybrid. Opt. Lett. 47, 2458–2461 (2022).
Google Scholar
Hu, H. et al. Surface Dyakonov–Cherenkov radiation. eLight 2, 2 (2022).
Pons-Valencia, P. et al. Launching of hyperbolic phonon-polaritons in h-BN slabs by resonant metal plasmonic antennas. Nat. Commun. 10, 3242 (2019).
Google Scholar
Maciel-Escudero, C., Konečná, A., Hillenbrand, R. & Aizpurua, J. Probing and steering bulk and surface phonon polaritons in uniaxial materials using fast electrons: hexagonal boron nitride. Phys. Rev. B 102, 115431 (2020).
Google Scholar
Moccia, M., Castaldi, G., Alù, A. & Galdi, V. Exploring interface effects in flatland optics. In 2023 Seventeenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials) X-114–X-116 (IEEE, 2023).
Sun, Y. et al. Direct measurement of polariton–polariton interaction strength. Nat. Phys. 13, 870–875 (2017).
Google Scholar
Zhang, Y. et al. Tunable Cherenkov radiation of phonon polaritons in silver nanowire/hexagonal boron nitride heterostructures. Nano Lett. 20, 2770–2777 (2020).
Google Scholar
Guo, X. et al. Mid-infrared analogue polaritonic reversed Cherenkov radiation in natural anisotropic crystals. Nat. Commun. 14, 2532 (2023).
Google Scholar
Hu, H. et al. Doping-driven topological polaritons in graphene/α-MoO3 heterostructures. Nat. Nanotechnol. 17, 940–946 (2022).
Google Scholar
Ruta, F. L. et al. Surface plasmons induce topological transition in graphene/α-MoO3 heterostructures. Nat. Commun. 13, 3719 (2022).
Google Scholar
Hu, H. et al. Active control of micrometer plasmon propagation in suspended graphene. Nat. Commun. 13, 1465 (2022).
Google Scholar
Qu, Y. et al. Tunable planar focusing based on hyperbolic phonon polaritons in α-MoO3. Adv. Mater. 34, 2105590 (2022).
Google Scholar
Correas-Serrano, D. & Gomez-Diaz, J. S. Nonreciprocal and collimated surface plasmons in drift-biased graphene metasurfaces. Phys. Rev. B 100, 081410 (2019).
Google Scholar
Rus, J., Bossart, A., Apffel, B., Malléjac, M. & Fleury, R. Experimental observation of parabolic wakes in thin plates. Phys. Rev. Res. 6, L032027 (2024).
Google Scholar
Chaves, A. J., Peres, N. M. R., Smirnov, G. & Mortensen, N. A. Hydrodynamic model approach to the formation of plasmonic wakes in graphene. Phys. Rev. B 96, 195438 (2017).