
Li, Y. et al. Flexible silicon solar cells with high power-to-weight ratios. Nature 626, 105–110 (2024).
Google Scholar
Pacchioni, G. Sustainable flexible supercapacitors. Nat. Rev. Mater. 7, 844 (2022).
Lu, C. et al. High-performance fibre battery with polymer gel electrolyte. Nature 629, 86–91 (2024).
Google Scholar
Tian, Z. et al. Ultrafast rechargeable Zn micro-batteries endowing a wearable solar charging system with high overall efficiency. Energy Environ. Sci. 14, 1602–1611 (2021).
Google Scholar
Wang, Q. et al. Fast-charge high-voltage layered cathodes for sodium-ion batteries. Nat. Sustain. 7, 338–347 (2024).
Chen, C. et al. Functional fiber materials to smart fiber devices. Chem. Rev. 123, 613–662 (2023).
Google Scholar
Wang, Y. et al. Flexible fuel cells: a prospective review. Energy Rev. 3, 100099 (2024).
Yang, Y. et al. Towards flexible fuel cells: development, challenge and prospect. Appl. Therm. Eng. 203, 117937 (2022).
Google Scholar
Lee, K.-S., Spendelow, J. S., Choe, Y.-K., Fujimoto, C. & Kim, Y. S. An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs. Nat. Energy 1, 16120 (2016).
Google Scholar
Shi, Q. et al. Methanol tolerance of atomically dispersed single metal site catalysts: mechanistic understanding and high-performance direct methanol fuel cells. Energy Environ. Sci. 13, 3544–3555 (2020).
Google Scholar
Fan, L. et al. Towards ultralow platinum loading proton exchange membrane fuel cells. Energy Environ. Sci. 16, 1466–1479 (2023).
Google Scholar
Xia, Z., Zhang, X., Sun, H., Wang, S. & Sun, G. Recent advances in multi-scale design and construction of materials for direct methanol fuel cells. Nano Energy 65, 104048 (2019).
Google Scholar
Develos-Bagarinao, K., Ishiyama, T., Kishimoto, H., Shimada, H. & Yamaji, K. Nanoengineering of cathode layers for solid oxide fuel cells to achieve superior power densities. Nat. Commun. 12, 3979 (2021).
Google Scholar
Yu, F. et al. Vertical-graphene-reinforced titanium alloy bipolar plates in fuel cells. Adv. Mater. 34, 2110565 (2022).
Google Scholar
Wan, L. et al. Oriented intergrowth of the catalyst layer in membrane electrode assembly for alkaline water electrolysis. Nat. Commun. 13, 7956 (2022).
Google Scholar
Li, C. et al. Unraveling the core of fuel cell performance: engineering the ionomer/catalyst interface. Energy Environ. Sci. 16, 2977–2990 (2023).
Google Scholar
Song, W. et al. Effect of polytetrafluoroethylene distribution in the gas diffusion layer on water flooding in proton exchange membrane fuel cells. Chin. J. Catal. 35, 468–473 (2014).
Google Scholar
Csoklich, C., Schmidt, T. J. & Büchi, F. N. High performance gas diffusion layers with added deterministic structures. Energy Environ. Sci. 15, 1293–1306 (2022).
Google Scholar
Yu, Y. et al. The construction of integrated Si-based micro proton exchange membrane fuel cells with improved performances. Nano Energy 61, 604–610 (2019).
Google Scholar
Sun, S. et al. Flexible all-solid-state direct methanol fuel cells with high specific power density. Small 19, 2205835 (2023).
Google Scholar
Zou, S. et al. Highly safe, durable, adaptable, and flexible fuel cell using gel/sponge composite material. Adv. Energy Mater. 12, 2103178 (2022).
Google Scholar
Hwang, W., Kim, S., Ahn, C.-Y., Cho, Y.-H. & Sung, Y.-E. Origami-based flexible and simple tubular polymer electrolyte membrane fuel cell stack. ACS Energy Lett. 6, 3195–3202 (2021).
Google Scholar
Kwon, C. H. et al. High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns. Nat. Commun. 5, 3928 (2014).
Google Scholar
Lee, K. I., Lee, S. W., Park, M. S. & Chu, C. N. The development of air-breathing proton exchange membrane fuel cell (PEMFC) with a cylindrical configuration. Int. J. Hydrog. Energy 35, 11844–11854 (2010).
Google Scholar
Sadiq Al-Baghdadi, M. A. R. Three-dimensional computational fluid dynamics model of a tubular-shaped PEM fuel cell. Renew. Energy 33, 1334–1345 (2008).
Google Scholar
Sim, H. J. et al. Stretchable fiber biofuel cell by rewrapping multiwalled carbon nanotube sheets. Nano Lett. 18, 5272–5278 (2018).
Google Scholar
Kreuer, K.-D., Rabenau, A. & Weppner, W. Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors. Angew. Chem. Int. Ed. 21, 208–209 (1982).
Agmon, N. The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995).
Google Scholar
Borup, R. et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107, 3904–3951 (2007).
Google Scholar
Ding, R. et al. Recent progress in the preparation and performance of protective coatings on metal bipolar plates of proton exchange membrane fuel cells—a review. Appl. Mater. Today 42, 102556 (2025).
Mukoyama, Y. & Mori, S. Combination of size exclusion and adsorption phenomena on a hydrophilic polymer gel column using organic solvents. J. Liq. Chromatogr. Relat. Technol. 12, 1417–1430 (1989).
Google Scholar
Sheng, S. W., Lei, L. I. & Xin, W. Y. Study on the methanol permeability in polyacrylamide solid gel memberanes. Sci. Technol. Chem. Ind. 11, 15–18 (2003).
Zhang, Y. et al. Atomically deviated Pd-Te nanoplates boost methanol-tolerant fuel cells. Sci. Adv. 6, eaba9731 (2020).
Google Scholar
Wang, H. et al. Failure mechanisms and strategies toward flexible zinc-air batteries. Adv. Funct. Mater. 34, 2407347 (2024).
Wen, Q. et al. A recyclable standalone microporous layer with interpenetrating network for sustainable fuel cells. Adv. Mater. 35, 2301504 (2023).
Google Scholar
Galizia, M., Paul, D. R. & Freeman, B. D. Liquid methanol sorption, diffusion and permeation in charged and uncharged polymers. Polymer 102, 281–291 (2016).
Google Scholar
Zou, X. et al. Diffusion behaviors of ethanol and water through g–C3N4–based membranes: insights from molecular dynamics simulation. J. Membr. Sci. 585, 81–89 (2019).
Google Scholar