• July 16, 2025
  • Live Match Score
  • 0


  • Wang, Q., Gao, Q., Al-Enizi, A. M., Nafady, A. & Ma, S. Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorg. Chem. Front. 7, 300–339 (2020).

    CAS 

    Google Scholar 

  • Wang, H. et al. A review on heterogeneous photocatalysis for environmental remediation: from semiconductors to modification strategies. Chin. J. Catal. 43, 178–214 (2022).

    CAS 

    Google Scholar 

  • Banerjee, T., Podjaski, F., Kröger, J., Biswal, B. P. & Lotsch, B. V. Polymer photocatalysts for solar-to-chemical energy conversion. Nat. Rev. Mater. 6, 168–190 (2021).

    CAS 

    Google Scholar 

  • He, T. & Zhao, Y. Covalent organic frameworks for energy conversion in photocatalysis. Angew. Chem. Int. Ed. 62, e202303086 (2023).

    CAS 

    Google Scholar 

  • Douglas, J. J., Sevrin, M. J. & Stephenson, C. R. J. Visible light photocatalysis: applications and new disconnections in the synthesis of pharmaceutical agents. Org. Process Res. Dev. 20, 1134–1147 (2016).

    CAS 

    Google Scholar 

  • Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    CAS 

    Google Scholar 

  • Bellotti, P., Huang, H.-M., Faber, T. & Glorius, F. Photocatalytic late-stage C–H functionalization. Chem. Rev. 123, 4237–4352 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Crisenza, G. E. M. & Melchiorre, P. Chemistry glows green with photoredox catalysis. Nat. Commun. 11, 803 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • De Kreijger, S., Glaser, F. & Troian-Gautier, L. From photons to reactions: key concepts in photoredox catalysis. Chem. Catal. 4, 101110 (2024).

    Google Scholar 

  • Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yoon, T. P., Ischay, M. A. & Du, J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem. 2, 527–532 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, Y. & Jiang, D. Photocatalysis with covalent organic frameworks. Acc. Chem. Res. 57, 3182–3193 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Mishra, B. et al. Covalent organic frameworks for photocatalysis. Adv. Mater. 50, 2413118 (2025).

    Google Scholar 

  • Wang, H. et al. Covalent organic framework photocatalysts: structures and applications. Chem. Soc. Rev. 49, 4135–4165 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Sun, K. et al. Energy-transfer-enabled photocatalytic transformations of aryl thianthrenium salts. Nat. Commun. 15, 9693 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Strieth-Kalthoff, F. & Glorius, F. Triplet energy transfer photocatalysis: unlocking the next level. Chem 6, 1888–1903 (2020).

    CAS 

    Google Scholar 

  • Schmitz, M., Bertrams, M.-S., Sell, A. C., Glaser, F. & Kerzig, C. Efficient energy and electron transfer photocatalysis with a coulombic dyad. J. Am. Chem. Soc. 146, 25799–25812 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Closs, G. L. & Miller, J. R. Intramolecular long-distance electron transfer in organic molecules. Science 240, 440–447 (1988).

    CAS 
    PubMed 

    Google Scholar 

  • Ghogare, A. A. & Greer, A. Using singlet oxygen to synthesize natural products and drugs. Chem. Rev. 116, 9994–10034 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Singh, N., Sen Gupta, R. & Bose, S. A comprehensive review on singlet oxygen generation in nanomaterials and conjugated polymers for photodynamic therapy in the treatment of cancer. Nanoscale 16, 3243–3268 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Tian, Y. et al. Heavy-atom-free covalent organic frameworks for organic room-temperature phosphorescence via Förster and Dexter energy transfer mechanism. Small Methods 9, 2401083 (2024).

    Google Scholar 

  • Liu, X. et al. Triazine–porphyrin-based hyperconjugated covalent organic framework for high-performance photocatalysis. J. Am. Chem. Soc. 144, 23396–23404 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Li, P., Dong, X., Zhang, Y., Lang, X. & Wang, C. An azine-linked 2D porphyrinic covalent organic framework for red light photocatalytic oxidative coupling of amines. Mater. Today Chem. 25, 100953 (2022).

    CAS 

    Google Scholar 

  • Wu, C. et al. Porphyrin covalent organic framework for photocatalytic synthesis of tetrahydroquinolines. Chin. Chem. Lett. 33, 4559–4562 (2022).

    CAS 

    Google Scholar 

  • Li, J. et al. Rationally modulating thiophene- and porphyrin-based donor–acceptor type covalent organic framework for effective photocatalytic organic reactions. Appl. Organomet. Chem. 38, e7605 (2024).

    CAS 

    Google Scholar 

  • Xia, Y., Zhang, W., Yang, S., Wang, L. & Yu, G. Research progress in donor–acceptor type covalent organic frameworks. Adv. Mater. 35, 2301190 (2023).

    CAS 

    Google Scholar 

  • Jin, S. et al. Creation of superheterojunction polymers via direct polycondensation: segregated and bicontinuous donor–acceptor π-columnar arrays in covalent organic frameworks for long-lived charge separation. J. Am. Chem. Soc. 137, 7817–7827 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Jin, S. et al. Charge dynamics in a donor–acceptor covalent organic framework with periodically ordered bicontinuous heterojunctions. Angew. Chem. Int. Ed. 52, 2017–2021 (2013).

    CAS 

    Google Scholar 

  • Chen, Y. et al. Hierarchical assembly of donor–acceptor covalent organic frameworks for photosynthesis of hydrogen peroxide from water and air. Nat. Synth. 3, 998–1010 (2024).

    CAS 

    Google Scholar 

  • Zhao, S. et al. Hydrophilicity gradient in covalent organic frameworks for membrane distillation. Nat. Mater. 20, 1551–1558 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Fresch, E. & Collini, E. The role of H-bonds in the excited-state properties of multichromophoric systems: static and dynamic aspects. Molecules 28, 3553 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc. Chem. Res. 45, 723–733 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Pawley, G. S. Unit-cell refinement from powder diffraction scans. J. Appl. Crystallogr. 14, 357–361 (1981).

    CAS 

    Google Scholar 

  • Uribe-Romo, F. J. et al. A crystalline imine-linked 3-D porous covalent organic framework. J. Am. Chem. Soc. 131, 4570–4571 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Shinde, D. B., Kandambeth, S., Pachfule, P., Kumar, R. R. & Banerjee, R. Bifunctional covalent organic frameworks with two dimensional organocatalytic micropores. Chem. Commun. 51, 310–313 (2015).

    CAS 

    Google Scholar 

  • Thommes, M. et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015).

    CAS 

    Google Scholar 

  • Zhou, T. et al. PEG-stabilized coaxial stacking of two-dimensional covalent organic frameworks for enhanced photocatalytic hydrogen evolution. Nat. Commun. 12, 3934 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, R. et al. Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution. Nat. Commun. 12, 1354 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blätte, D., Ortmann, F. & Bein, T. Photons, excitons, and electrons in covalent organic frameworks. J. Am. Chem. Soc. 146, 32161–32205 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghosh, S. et al. Identification of prime factors to maximize the photocatalytic hydrogen evolution of covalent organic frameworks. J. Am. Chem. Soc. 142, 9752–9762 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Gordo-Lozano, M. et al. Boosting photoconductivity by increasing the structural complexity of multivariate covalent organic frameworks. Small 21, 2406211 (2025).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, L. et al. The non-covalent assembly of benzene-bridged metallosalphen dimers: photoconductive tapes with large carrier mobility and spatially distinctive conduction anisotropy. Chem. Commun. 7, 3119–3121 (2009).

    Google Scholar 

  • Tajima, K. et al. Synthesis and electron-transporting properties of phenazine bisimides. J. Mater. Chem. C 13, 655–662 (2025).

    CAS 

    Google Scholar 

  • Feng, X. et al. An ambipolar conducting covalent organic framework with self-sorted and periodic electron donor–acceptor ordering. Adv. Mater. 24, 3026–3031 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Luo, Z. et al. Manipulating pπ resonance through methoxy group engineering in covalent organic frameworks for an efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 64, e202420217 (2025).

    CAS 

    Google Scholar 

  • Xiong, L. & Tang, J. Strategies and challenges on selectivity of photocatalytic oxidation of organic substances. Adv. Energy Mater. 11, 2003216 (2021).

    CAS 

    Google Scholar 

  • Wen, Y., Yan, J., Yang, B., Zhuang, Z. & Yu, Y. Reactive oxygen species on transition metal-based catalysts for sustainable environmental applications. J. Mater. Chem. A 10, 19184–19210 (2022).

    CAS 

    Google Scholar 

  • Zhou, Z., Song, J., Nie, L. & Chen, X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev. 45, 6597–6626 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, B., Chen, Y. & Shi, J. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 119, 4881–4985 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Shinkarenko, N. V. & Aleskovskii, V. B. Singlet oxygen: methods of preparation and detection. Russ. Chem. Rev. 50, 220 (1981).

    Google Scholar 

  • Partanen, S. B., Erickson, P. R., Latch, D. E., Moor, K. J. & McNeill, K. Dissolved organic matter singlet oxygen quantum yields: evaluation using time-resolved singlet oxygen phosphorescence. Environ. Sci. Technol. 54, 3316–3324 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Entradas, T., Waldron, S. & Volk, M. The detection sensitivity of commonly used singlet oxygen probes in aqueous environments. J. Photochem. Photobiol. B 204, 111787 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Nagai, A. et al. A squaraine-linked mesoporous covalent organic framework. Angew. Chem. Int. Ed. 52, 3770–3774 (2013).

    CAS 

    Google Scholar 

  • Sun, N. et al. Photoresponsive covalent organic frameworks with diarylethene switch for tunable singlet oxygen generation. Chem. Mater. 34, 1956–1964 (2022).

    CAS 

    Google Scholar 

  • Feng, X. et al. Two-dimensional artificial light-harvesting antennae with predesigned high-order structure and robust photosensitising activity. Sci. Rep. 6, 32944 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, K. C., Cho, J. & Lee, C. Y. Porphyrin and pyrene-based conjugated microporous polymer for efficient sequestration of CO2 and iodine and photosensitization for singlet oxygen generation. RSC Adv. 6, 75478–75481 (2016).

    CAS 

    Google Scholar 

  • Peng, Y.-Z. et al. Charge transfer from donor to acceptor in conjugated microporous polymer for enhanced photosensitization. Angew. Chem. Int. Ed. 60, 22062–22069 (2021).

    CAS 

    Google Scholar 

  • Zhang, W. et al. Combining ruthenium(II) complexes with metal–organic frameworks to realize effective two-photon absorption for singlet oxygen generation. ACS Appl. Mater. Interfaces 8, 21465–21471 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Xue, F. et al. Iridium complex loaded polypyrrole nanoparticles for NIR laser induced photothermal effect and generation of singlet oxygen. RSC Adv. 6, 15509–15512 (2016).

    CAS 

    Google Scholar 

  • Finkelstein, E., Rosen, G. M. & Rauckman, E. J. Spin trapping of superoxide and hydroxyl radical: practical aspects. Arch. Biochem. Biophys. 200, 1–16 (1980).

    CAS 
    PubMed 

    Google Scholar 

  • Choudhury, L. H. & Parvin, T. Recent advances in the chemistry of imine-based multicomponent reactions (MCRs). Tetrahedron 67, 8213–8228 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kobayashi, S. & Ishitani, H. Catalytic enantioselective addition to imines. Chem. Rev. 99, 1069–1094 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Salahuddin, Shaharyar, M. & Mazumder, A. Benzimidazoles: a biologically active compound. Arab. J. Chem. 10, S157–S173 (2017).

    CAS 

    Google Scholar 

  • Gaba, M., Singh, S. & Mohan, C. Benzimidazole: an emerging scaffold for analgesic and anti-inflammatory agents. Eur. J. Med. Chem. 76, 494–505 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Bagdi, A. K. et al. Visible light promoted cross-dehydrogenative coupling: a decade update. Green. Chem. 22, 6632–6681 (2020).

    CAS 

    Google Scholar 

  • Tian, T., Li, Z. & Li, C.-J. Cross-dehydrogenative coupling: a sustainable reaction for C–C bond formations. Green. Chem. 23, 6789–6862 (2021).

    CAS 

    Google Scholar 

  • Shi, J.-L. et al. 2D sp2 carbon-conjugated porphyrin covalent organic framework for cooperative photocatalysis with TEMPO. Angew. Chem. Int. Ed. 59, 9088–9093 (2020).

    CAS 

    Google Scholar 

  • Johnson, J. A. et al. Porphyrin-metalation-mediated tuning of photoredox catalytic properties in metal–organic frameworks. ACS Catal. 5, 5283–5291 (2015).

    CAS 

    Google Scholar 

  • Battula, V. R. et al. Natural sunlight driven oxidative homocoupling of amines by a truxene-based conjugated microporous polymer. ACS Catal. 8, 6751–6759 (2018).

    CAS 

    Google Scholar 

  • Su, F. et al. Aerobic oxidative coupling of amines by carbon nitride photocatalysis with visible light. Angew. Chem. Int. Ed. 50, 657–660 (2011).

    CAS 

    Google Scholar 

  • Zhang, N. et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 138, 8928–8935 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Luo, B. et al. Benzotrithiophene and triphenylamine based covalent organic frameworks as heterogeneous photocatalysts for benzimidazole synthesis. J. Catal. 402, 52–60 (2021).

    CAS 

    Google Scholar 

  • Han, S. et al. Bandgap engineering in benzotrithiophene-based conjugated microporous polymers: a strategy for screening metal-free heterogeneous photocatalysts. J. Mater. Chem. A 9, 3333–3340 (2021).

    CAS 

    Google Scholar 

  • Razavi, S. A. A. et al. Redox metal–organic framework for photocatalytic organic transformation: the role of tetrazine function in radical-anion pathway. Inorg. Chem. 61, 19134–19143 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, C.-A., Han, Y.-F., Nie, K. & Li, Y.-W. Porous organic frameworks with mesopores and [Ru(bpy)3]2+ ligand built-in as a highly efficient visible-light heterogeneous photocatalyst. Mater. Chem. Front. 3, 1909–1917 (2019).

    CAS 

    Google Scholar 

  • Li, Z. et al. Visible-light-induced condensation cyclization to synthesize benzimidazoles using fluorescein as a photocatalyst. Green. Chem. 21, 3602–3605 (2019).

    CAS 

    Google Scholar 

  • Wang, C., Xie, Z., deKrafft, K. & Lin, W. Doping meta–organic frameworks for water oxidation, carbon dioxide reduction and organic photocatalysis. J. Am. Chem. Soc. 133, 13445–13454 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Zhi, Y. et al. Covalent organic frameworks as metal-free heterogeneous photocatalysts for organic transformations. J. Mater. Chem. A 5, 22933–22938 (2017).

    CAS 

    Google Scholar 

  • Che, Y. et al. Ultrasmall Ag nanoparticles on photoactive metal–organic framework boosting aerobic cross-dehydrogenative coupling under visible light. Appl. Surf. Sci. 634, 157699 (2023).

    CAS 

    Google Scholar 

  • Sharma, N., Chauhan, D. K., Saini, N. & Kailasam, K. Metal-free triazine-based polymeric network for solar-to-chemical conversion: an insight into the aza-Henry reaction. ACS Appl. Polym. Mater. 5, 4333–4341 (2023).

    CAS 

    Google Scholar 

  • Ma, W. et al. Phosphorescent bismoviologens for electrophosphorochromism and visible light-induced cross-dehydrogenative coupling. J. Am. Chem. Soc. 143, 1590–1597 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, W. et al. Difluoroborate-based conjugated organic polymer: a high-performance heterogeneous photocatalyst for oxidative coupling reactions. J. Mater. Sci. 54, 1205–1212 (2019).

    CAS 

    Google Scholar 

  • Wang, H. et al. α-Cyanation of aromatic tertiary amines using malononitrile as a low-toxic cyanide source under the catalysis of NiGa layered double oxide. Asian J. Org. Chem. 9, 1769–1773 (2020).

    CAS 

    Google Scholar 

  • Liu, R. et al. Linkage-engineered donor–acceptor covalent organic frameworks for optimal photosynthesis of hydrogen peroxide from water and air. Nat. Catal. 7, 195–206 (2024).

    Google Scholar 

  • Oleg, V. et al. OLEX2: a complete structure solution refinement and analysis program. J. Appl. Cryst. 42, 339–341 (2009).

    Google Scholar 

  • Sheldrick, G. M. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 71, 3–8 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 71, 3–8 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Thompson, P., Cox, D. E. & Hastings, J. B. Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J. Appl. Crystallogr. 20, 79–83 (1987).

    CAS 

    Google Scholar 

  • Bérar, J.-F. & Baldinozzi, G. Modeling of line-shape asymmetry in powder diffraction. J. Appl. Crystallogr. 26, 128–129 (1993).

    Google Scholar 

  • Elstner, M. et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 58, 7260–7268 (1998).

    CAS 

    Google Scholar 

  • Aradi, B., Hourahine, B. & Frauenheim, T. DFTB+, a sparse matrix-based implementation of the DFTB method. J. Phys. Chem. A 111, 5678–5684 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Hourahine, B. et al. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys. 152, 124101 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Clark, S. J. et al. First principles methods using CASTEP. Zeitschrift für Kristallographie – Crystalline Materials 220, 567–570 (2005).

    CAS 

    Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 41, 48–76 (2002).

    CAS 

    Google Scholar 

  • Qin, C. et al. Dual donor–acceptor covalent organic frameworks for hydrogen peroxide photosynthesis. Nat. Commun. 14, 5238 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo, Y. et al. Sulfone-modified covalent organic frameworks enabling efficient photocatalytic hydrogen peroxide generation via one-step two-electron O2 reduction. Angew. Chem. Int. Ed. 62, e202305355 (2023).

    CAS 

    Google Scholar 

  • Wang, H. et al. A crystalline partially fluorinated triazine covalent organic framework for efficient photosynthesis of hydrogen peroxide. Angew. Chem. Int. Ed. 61, e202202328 (2022).

    CAS 

    Google Scholar 

  • Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508–517 (1990).

    CAS 

    Google Scholar 

  • Akkermans, R. L. C., Spenley, N. A. & Robertson, S. H. Monte Carlo methods in Materials Studio. Mol. Simul. 39, 1153–1164 (2013).

    CAS 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *