
Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).
Youngblood, N., Chen, C., Koester, S. J. & Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photon. 9, 247–252 (2015).
Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).
Das, S. et al. Tunable transport gap in phosphorene. Nano Lett. 14, 5733–5739 (2014).
Sorkin, V. et al. Recent advances in the study of phosphorene and its nanostructures. Crit. Rev. Solid State Mat. Sci. 42, 1–82 (2016).
Sisakht, E. T., Fazileh, F., Zare, M. H., Zarenia, M. & Peeters, F. M. Strain-induced topological phase transition in phosphorene and in phosphorene nanoribbons. Phys. Rev. B 94, 085417 (2016).
Poljak, M. & Suligoj, T. Immunity of electronic and transport properties of phosphorene nanoribbons to edge defects. Nano Res. 9, 1723–1734 (2016).
Peng, X. & Chen, K. Comparison on thermal transport properties of graphene and phosphorene nanoribbons. Sci. Rep. 5, 16215 (2015).
Feng, X. et al. High mobility anisotropic black phosphorus nanoribbon field-effect transistor. Adv. Funct. Mater. 28, 1801524 (2018).
Zhang, J. et al. Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Sci. Rep. 4, 6452 (2014).
Sarvari, H. et al. Atomistic quantum transport simulation of multilayer phosphorene nanoribbon field effect transistors. Phys. E 91, 161–168 (2017).
Peng, X., Copple, A. & Wei, Q. Edge effects on the electronic properties of phosphorene nanoribbons. J. Appl. Phys. 116, 144301 (2014).
Xie, F. et al. Tuning of the electronic and transport properties of phosphorene nanoribbons by edge types and edge defects. Org. Electron. 42, 21–27 (2017).
Zhu, Z. et al. Magnetism of zigzag edge phosphorene nanoribbons. Appl. Phys. Lett. 105, 113105 (2014).
Xiao, J. et al. First-principles prediction of the charge mobility in black phosphorus semiconductor nanoribbons. J. Phys. Chem. Lett. 6, 4141–4147 (2015).
Liu, Y., Feng, X., Qin, Y. & Wang, Q. Width dependent two-photon absorption in monolayer black phosphorus nanoribbons. Appl. Sci. 9, 2014 (2019).
Fei, R. et al. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett. 14, 6393–6399 (2014).
Masih et al. Controlled sculpture of black phosphorus nanoribbons. ACS Nano 10, 5687–5695 (2016).
Macewicz, L., Pyrchla, K., Bogdanowicz, R., Sumanasekera, G. & Jasinski, J. B. Chemical vapor transport route toward black phosphorus nanobelts and nanoribbons. J. Phys. Chem. Lett. 12, 8347–8354 (2021).
Watts, M. C. et al. Production of phosphorene nanoribbons. Nature 568, 216–220 (2019).
Clancy, A. J. et al. Charged carbon nanomaterials: redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chem. Rev. 118, 7363–7408 (2018).
Cano-MáRquez, A. G. et al. Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 9, 1527–1533 (2009).
Jiao, L. Y., Wang, X. R., Diankov, G., Wang, H. L. & Dai, H. Facile synthesis of high quality graphene nanoribbons. Nat. Nanotechnol. 5, 321–325 (2010).
Abellán, G. et al. Exploring the formation of black phosphorus intercalation compounds with alkali metals. Angew. Chem. Int. Ed. 56, 15267–15273 (2017).
Lee, Y. et al. Atomic-scale imaging of few-layer black phosphorus and its reconstructed edge. J. Phys. D 50, 084003 (2017).
Zhao, W. et al. Large-scale, highly efficient, and green liquid-exfoliation of black phosphorus in ionic liquids. ACS Appl. Mater. Interfaces 7, 27608–27612 (2015).
Yasaei, P. et al. High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 27, 1887–1892 (2015).
Jia, C. et al. Surface coordination modification and electrical properties of few-layer black phosphorus exfoliated by the liquid-phase method. J. Alloys Compd. 799, 99–107 (2019).
Wu, F., Xie, A., Sun, M., Jiang, W. & Zhang, K. Few-layer black phosphorus: a bright future in electromagnetic absorption. Mater. Lett. 193, 30–33 (2017).
Luo, F. et al. Ultrafast cathodic exfoliation of few-layer black phosphorus in aqueous solution. ACS Appl. Nano Mater. 2, 3793–3801 (2019).
Liu, N., Hong, J. W., Pidaparti, R. & Wang, X. Q. Fracture patterns and the energy release rate of phosphorene. Nanoscale 8, 5728–5736 (2016).
Seo, S. et al. Triangular black phosphorus atomic layers by liquid exfoliation. Sci. Rep. 6, 23736 (2016).
Tan, C. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).
Sha, Z. D., Pei, Q. X., Ding, Z., Jiang, J. W. & Zhang, Y. W. Mechanical properties and fracture behavior of single-layer phosphorene at finite temperatures. J. Phys. D 48, 395303 (2015).
Jiang, J. W. Parametrization of Stillinger–Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus. Nanotechnology 26, 315706 (2015).
Sha, Z. D., Pei, Q. X., Zhang, Y. Y. & Zhang, Y. W. Atomic vacancies significantly degrade the mechanical properties of phosphorene. Nanotechnology 27, 315704 (2016).
Köpf, M. et al. Access and in situ growth of phosphorene-precursor black phosphorus. J. Cryst. Growth 405, 6–10 (2014).
Favron, A. et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015).
Chen, C. et al. Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes. Nat. Electron. 4, 653–663 (2021).
Du, Y., Liu, H., Deng, Y. & Ye, P. D. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. ACS Nano 8, 10035–10042 (2014).
Koenig, S. P., Doganov, R. A., Schmidt, H., Neto, A. H. C. & Özyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014).
Park, H. & Kim, J. Enhancing ambipolar carrier transport of black phosphorus field-effect transistors with Ni–P alloy contacts. Phys. Chem. Chem. Phys. 20, 22439–22444 (2018).
Avsar, A. et al. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 9, 4138–4145 (2015).
Liu, Z. et al. Unzipping of black phosphorus to form zigzag-phosphorene nanobelts. Nat. Commun. 11, 3917 (2020).
Wan, B. et al. Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation. Nanotechnology 26, 435702 (2015).
Buscema, M. et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347–3352 (2014).
Huang, L. et al. Infrared black phosphorus phototransistor with tunable responsivity and low noise equivalent power. ACS Appl. Mater. Interfaces 9, 36130–36136 (2017).
Liu, S. et al. Thickness-dependent Raman spectra, transport properties and infrared photoresponse of few-layer black phosphorus. J. Mater. Chem. C 3, 10974–10980 (2015).
Chen, C. et al. Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics. Nano Lett. 17, 985–991 (2017).
Xing, B. et al. Surface charge transfer doping and effective passivation of black phosphorus field effect transistors. J. Mater. Chem. C 8, 6595–6604 (2020).
Xiang, D. et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun. 6, 6485 (2015).
Tan, S. et al. Quasi-monolayer black phosphorus with high mobility and air stability. Adv. Mater. 30, 1704619 (2018).
Xia, F. et al. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).
Liu, N. et al. Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation. ACS Nano 8, 6902–6910 (2014).
Yin, Z. et al. Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2012).
Fang, T., Konar, A., Xing, H. & Jena, D. Mobility in semiconducting graphene nanoribbons: phonon, impurity, and edge roughness scattering. Phys. Rev. B 78, 205403 (2008).
Chen, C. et al. Graphene nanoribbons under mechanical strain. Adv. Mater. 27, 303–309 (2015).
Chen, X. et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun. 6, 7315 (2015).
Yu, X. et al. A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO2. Nanoscale 8, 327–332 (2016).
Qiu, C. et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355, 271–276 (2017).
Gong, F. et al. Black phosphorus infrared photodetectors with fast response and high photoresponsivity. Phys. Status Solidi RRL 12, 1800310 (2018).
Hou, C. et al. Multilayer black phosphorus near-infrared photodetectors. Sensors 18, 1668 (2018).
Liu, Y. D., Cai, Y. Q., Zhang, G., Zhang, Y. M. & Ang, K. W. Al-doped black phosphorus p–n homojunction diode for high performance photovoltaic. Adv. Funct. Mater. 27, 1604638 (2017).
Ling, Z. et al. Large-scale two-dimensional MoS2 photodetectors by magnetron sputtering. Opt. Express 23, 13580–13586 (2015).
Huang, H. et al. Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology 27, 445201 (2016).
Zeng, Q. et al. Carbon nanotube arrays based high-performance infrared photodetector. Opt. Mater. Express 2, 839–848 (2012).
Ye, L., Li, H., Chen, Z. F. & Xu, J. B. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 3, 692–699 (2016).
Ye, L. et al. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy 37, 53–60 (2017).
Zhang, T. et al. Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction. Sci. Rep. 6, 38569 (2017).
Yu, W. et al. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility. Small 13, 1700268 (2017).
Guo, T. et al. High-gain MoS2/Ta2NiSe5 heterojunction photodetectors with charge transfer and suppressing dark current. ACS Appl. Mater. Interfaces 14, 56384–56394 (2022).
Dhanabalan, S. C., Ponraj, J. S., Zhang, H. & Bao, Q. Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials. Nanoscale 8, 6410–6434 (2016).
Guo, Q. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 16, 4648–4655 (2016).
Chen, Z. et al. A stage-by-stage phase-induction and nucleation of black phosphorus from red phosphorus under low-pressure mineralization. CrystEngComm 19, 7207–7212 (2017).
Barthel, J. Dr. Probe: a software for high-resolution STEM image simulation. Ultramicroscopy 193, 1–11 (2018).