• July 10, 2025
  • Live Match Score
  • 0


  • Wu, G. et al. Ferroelectric-defined reconfigurable homojunctions for in-memory sensing and computing. Nat. Mater. 22, 1499–1506 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qiu, H. et al. Two-dimensional materials for future information technology: status and prospects. Sci. China Inf. Sci. 67, 160400 (2024).

    Article 

    Google Scholar 

  • Wang, C., You, L., Cobden, D. & Wang, J. Towards two-dimensional van der Waals ferroelectrics. Nat. Mater. 22, 542–552 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deb, S. et al. Cumulative polarization in conductive interfacial ferroelectrics. Nature 612, 465–469 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Van Winkle, M. et al. Engineering interfacial polarization switching in van der Waals multilayers. Nat. Nanotechnol. 19, 751–757 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Suzuki, R. et al. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat. Nanotechnol. 9, 611–617 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scuri, G. et al. Electrically tunable valley dynamics in twisted WSe2/WSe2 bilayers. Phys. Rev. Lett. 124, 217403 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, X. et al. Rhombohedral-stacked bilayer transition metal dichalcogenides for high-performance atomically thin CMOS devices. Sci. Adv. 9, eade5706 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rogée, L. et al. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science 376, 973–978 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Shi, J. et al. 3R MoS2 with broken inversion symmetry: a promising ultrathin nonlinear optical device. Adv. Mater. 29, 1701486 (2017).

    Article 

    Google Scholar 

  • Dong, Y. et al. Giant bulk piezophotovoltaic effect in 3R-MoS2. Nat. Nanotechnol. 18, 36–41 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, D. et al. Non-volatile electrical polarization switching via domain wall release in 3R-MoS2 bilayer. Nat. Commun. 15, 1389 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suh, J. et al. Reconfiguring crystal and electronic structures of MoS2 by substitutional doping. Nat. Commun. 9, 199 (2019).

    Article 

    Google Scholar 

  • Liu, L. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605, 69–75 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Q. et al. Layer-by-layer epitaxy of multi-layer MoS2 wafers. Natl Sci. Rev. 9, nwac077 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, T. et al. Ferroelectric transistors based on shear-transformation-mediated rhombohedral-stacked molybdenum disulfide. Nat. Electron. 7, 29–38 (2024).

    Article 
    CAS 

    Google Scholar 

  • Zhang, X. et al. Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy. Nat. Commun. 10, 598 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deng, Y. et al. Controlled growth of 3R phase tantalum diselenide and its enhanced superconductivity. J. Am. Chem. Soc. 142, 2948–2955 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pan, Y. et al. Heteroepitaxy of semiconducting 2H-MoTe2 thin films on arbitrary surfaces for large-scale heterogeneous integration. Nat. Synth. 1, 701–708 (2022).

    Article 
    CAS 

    Google Scholar 

  • Chang, C. et al. Remote epitaxy of single-crystal rhombohedral WS2 bilayers. Nat. Commun. 15, 4130 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qin, B. et al. Interfacial epitaxy of multilayer rhombohedral transition-metal dichalcogenide single crystals. Science 385, 99–104 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Puretzky, A. A. et al. Low-frequency Raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations. ACS Nano 9, 6333–6342 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liang, L. et al. Low-frequency shear and layer-breathing modes in Raman scattering of two-dimensional materials. ACS Nano 11, 11777–11802 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Seol, M. et al. High-throughput growth of wafer-scale monolayer transition metal dichalcogenide via vertical Ostwald ripening. Adv. Mater. 32, 2003542 (2020).

    Article 
    CAS 

    Google Scholar 

  • Strachan, J., Masters, A. F. & Maschmeyer, T. 3R-MoS2 in review: history, status, and outlook. ACS Appl. Energy Mater. 4, 7405–7418 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wang, L. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, T. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 579, 219–223 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, P. et al. Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano 14, 5036–5045 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, X. et al. Defect-controlled nucleation and orientation of WSe2 on hBN: a route to single-crystal epitaxial monolayers. ACS Nano 13, 3341–3352 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, F. et al. Full orientation control of epitaxial MoS2 on hBN assisted by substrate defects. Phys. Rev. B 99, 155430 (2019).

    Article 
    CAS 

    Google Scholar 

  • Li, J. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368–374 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Addou, R. et al. Impurities and electronic property variations of natural MoS2 crystal surfaces. ACS Nano 9, 9124–9133 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ferreira, F. et al. Adsorption of H2, O2, H2O, OH and H on monolayer MoS2. J. Phys. Condens. Matter 30, 035003 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hong, J. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 6, 6293 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Konabe, S. & Yamamoto, T. Piezoelectric coefficients of bulk 3R transition metal dichalcogenides. Jpn. J. Appl. Phys. 56, 098002 (2017).

    Article 

    Google Scholar 

  • Wang, J. et al. Logic and in-memory computing achieved in a single ferroelectric semiconductor transistor. Sci. Bull. 66, 2288–2296 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wang, L. et al. Exploring ferroelectric switching in αIn2Se3 for neuromorphic computing. Adv. Funct. Mater. 30, 2004609 (2020).

    Article 
    CAS 

    Google Scholar 

  • Baek, S. et al. Ferroelectric field-effect-transistor integrated with ferroelectrics heterostructure. Adv. Sci. 9, e2200566 (2022).

    Article 

    Google Scholar 

  • Wang, S. et al. Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing. Nat. Commun. 12, 53 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xue, F. et al. Giant ferroelectric resistance switching controlled by a modulatory terminal for low-power neuromorphic in-memory computing. Adv. Mater. 33, e2008709 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Singh, P. et al. Two-dimensional CIPS-InSe van der Waal heterostructure ferroelectric field effect transistor for nonvolatile memory applications. ACS Nano 16, 5418–5426 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liao, J. et al. Van der Waals ferroelectric semiconductor field effect transistor for in-memory computing. ACS Nano 17, 6095–6102 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bao, Y. et al. Gate-tunable in-plane ferroelectricity in few-layer SnS. Nano Lett. 19, 5109–5117 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kwon, K. C. et al. In-plane ferroelectric tin monosulfide and its application in a ferroelectric analog synaptic device. ACS Nano 14, 7628–7638 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    CAS 

    Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phy. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 

    Google Scholar 

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Ming, W., Huang, B. & Li, J. Decoupling competing electromechanical mechanisms in dynamic atomic force microscopy. J. Mech. Phys. Solids 159, 104758 (2022).

    Article 
    CAS 

    Google Scholar 

  • Chen, Q. N., Ou, Y., Ma, F. & Li, J. Mechanisms of electromechanical coupling in strain based scanning probe microscopy. Appl. Phys. Lett. 104, 242907 (2014).

    Article 

    Google Scholar 

  • Jungk, T., Hoffmann, Á. & Soergel, E. Quantitative analysis of ferroelectric domain imaging with piezoresponse force microscopy. Appl. Phys. Lett. 89, 163507 (2006).

    Article 

    Google Scholar 

  • Lobato, I. & Van Dyck, D. MULTEM: a new multislice program to perform accurate and fast electron diffraction and imaging simulations using graphics processing units with CUDA. Ultramicroscopy 156, 9–17 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, W. et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613, 274–279 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jerry, M. et al. Ferroelectric FET analog synapse for acceleration of deep neural network training. In IEEE International Electron Devices Meeting (IEDM) 6.2.1–6.2.4 (IEEE, 2017).

  • Beeche, C. et al. Super U-Net: a modularized generalizable architecture. Pattern Recognit. 128, 108669 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, P. et al. A new method for classifying and segmenting material microstructure based on machine learning. Mater. Des. 227, 111775 (2023).

    Article 

    Google Scholar 

  • Bangaru, S. S., Wang, C., Zhou, X. & Hassan, M. Scanning electron microscopy (SEM) image segmentation for microstructure analysis of concrete using U-net convolutional neural network. Autom. Constr. 14, 104602 (2022).

    Article 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *