• May 31, 2025
  • Live Match Score
  • 0


  • Medvedeva, J. E. & Freeman, A. J. Combining high conductivity with complete optical transparency: a band structure approach. Europhys. Lett. 69, 583–587 (2005).

    Article 
    CAS 

    Google Scholar 

  • Khurgin, J. B. & Sun, G. In search of the elusive lossless metal. Appl. Phys. Lett. 96, 181102 (2010).

    Article 

    Google Scholar 

  • Parkin, S. et al. Superconductivity in the organic charge transfer salts: (TMTSF)2X and (TMTTF)2X. Mol. Cryst. Liq. Cryst. 79, 605–615 (1982).

    Article 

    Google Scholar 

  • Mitra, S. S. & Bendow, B. (eds.) Optical Properties of Highly Transparent Solids (Springer, 1975).

  • Ginley, D. S. (ed.) Handbook of Transparent Conductors (Springer, 2011).

  • Malyi, O. I. & Zunger, A. False metals, real insulators, and degenerate gapped metals. Appl. Phys. Rev. 7, 041310 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhang, X., Zhang, L., Perkins, J. D. & Zunger, A. Intrinsic transparent conductors without doping. Phys. Rev. Lett. 115, 176602 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Gjerding, M. N., Pandey, M. & Thygesen, K. S. Band structure engineered layered metals for low-loss plasmonics. Nat. Commun. 8, 15133 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, G. et al. Design of intrinsic transparent conductors from a synergetic effect of symmetry and spatial-distribution forbidden transitions. Phys. Rev. Lett. 134, 036401 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hu, X. et al. High-throughput search for lossless metals. Phys. Rev. Mater. 6, 065203 (2022).

    Article 
    CAS 

    Google Scholar 

  • Jérome, D. The physics of organic superconductors. Science 252, 1509–1514 (1991).

    Article 
    PubMed 

    Google Scholar 

  • Jacko, A. C. et al. Electronic properties of Fabre charge-transfer salts under various temperature and pressure conditions. Phys. Rev. B 87, 155139 (2013).

    Article 

    Google Scholar 

  • Korin-Hamzić, B., Tafra, E., Basletić, M., Hamzić, A. & Dressel, M. Conduction anisotropy and Hall effect in the organic conductor (TMTTF)2AsF6: evidence for Luttinger liquid behavior and charge ordering. Phys. Rev. B 73, 115102 (2006).

    Article 

    Google Scholar 

  • Korzeb, K., Gajc, M. & Pawlak, D. A. Compendium of natural hyperbolic materials. Opt. Express 23, 25406–25424 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Farges, J.-P. Organic Conductors: Fundamentals and Applications 138–140 (CRC Press, 1994).

  • Dressel, M. et al. Charge and spin dynamics of TMTSF and TMTTF salts. Synth. Met. 120, 719–720 (2001).

    Article 
    CAS 

    Google Scholar 

  • Köhler, B., Rose, E., Dumm, M., Untereiner, G. & Dressel, M. Comprehensive transport study of anisotropy and ordering phenomena in quasi-one-dimensional (TMTTF)2X salts (X = PF6, AsF6, SbF6, BF4, ClO4, ReO4). Phys. Rev. B 84, 035124 (2011).

    Article 

    Google Scholar 

  • Itoi, M., Araki, C., Hedo, M., Uwatoko, Y. & Nakamura, T. Anomalously wide superconducting phase of one-dimensional organic conductor (TMTTF)2SbF6. J. Phys. Soc. Jpn 77, 023701 (2008).

    Article 

    Google Scholar 

  • Naik, G. V., Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vescoli, V., Degiorgi, L., Starkey, K. P. & Montgomery, L. K. Anisotropy in the optical response of (TMTTF)2X (X=PF6 and Br) Bechgaard salts. Solid State Commun. 111, 507–512 (1999).

    Article 
    CAS 

    Google Scholar 

  • Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nat. Photon. 7, 948–957 (2013).

    Article 
    CAS 

    Google Scholar 

  • Jellison, G. E., Podraza, N. J. & Shan, A. Ellipsometry: dielectric functions of anisotropic crystals and symmetry. J. Opt. Soc. Am. A 39, 2225–2237 (2022).

    Article 

    Google Scholar 

  • Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications 137–138 (John Wiley & Sons, 2007).

  • Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article 
    CAS 

    Google Scholar 

  • Yang, H. U. et al. Optical dielectric function of silver. Phys. Rev. B 91, 235137 (2015).

    Article 

    Google Scholar 

  • Secondo, R., Khurgin, J. & Kinsey, N. Absorptive loss and band non-parabolicity as a physical origin of large nonlinearity in epsilon-near-zero materials. Opt. Mater. Express 10, 1545–1560 (2020).

    Article 

    Google Scholar 

  • Zhang, C. et al. Unraveling Urbach tail effects in high-performance organic photovoltaics: dynamic vs static disorder. ACS Energy Lett. 7, 1971–1979 (2022).

    Article 
    CAS 

    Google Scholar 

  • Ugur, E. et al. Life on the Urbach edge. J. Phys. Chem. Lett. 13, 7702–7711 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Khusayfan, N. M. & El-Nahass, M. M. Study of structure and electro-optical characteristics of indium tin oxide thin films. Adv. Condens. Matter Phys. 2013, e408182 (2013).

    Google Scholar 

  • Smith, N. V. Optical constants of sodium and potassium from 0.5 to 4.0 eV by split-beam ellipsometry. Phys. Rev. 183, 634–644 (1969).

    Article 
    CAS 

    Google Scholar 

  • Graja, A. Low-Dimensional Organic Conductors (World Scientific, 1992).

  • Xie, L. S., Skorupskii, G. & Dinca, M. Electrically conductive metal–organic frameworks. Chem. Rev. 120, 8536–8580 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eshaghi, A. & Graeli, A. Optical and electrical properties of indium tin oxide (ITO) nanostructured thin films deposited on polycarbonate substrates ‘thickness effect’. Optik 125, 1478–1481 (2014).

    Article 
    CAS 

    Google Scholar 

  • Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272–1276 (2011).

    Article 
    CAS 

    Google Scholar 

  • Hafner, J. Ab-initio simulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 29, 2044–2078 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article 
    CAS 

    Google Scholar 

  • Wu, Z. Dataset: hyper-gap transparent conductor. Zenodo https://doi.org/10.5281/zenodo.15228102 (2025).


  • Leave a Reply

    Your email address will not be published. Required fields are marked *