
Medvedeva, J. E. & Freeman, A. J. Combining high conductivity with complete optical transparency: a band structure approach. Europhys. Lett. 69, 583–587 (2005).
Google Scholar
Khurgin, J. B. & Sun, G. In search of the elusive lossless metal. Appl. Phys. Lett. 96, 181102 (2010).
Google Scholar
Parkin, S. et al. Superconductivity in the organic charge transfer salts: (TMTSF)2X and (TMTTF)2X. Mol. Cryst. Liq. Cryst. 79, 605–615 (1982).
Google Scholar
Mitra, S. S. & Bendow, B. (eds.) Optical Properties of Highly Transparent Solids (Springer, 1975).
Ginley, D. S. (ed.) Handbook of Transparent Conductors (Springer, 2011).
Malyi, O. I. & Zunger, A. False metals, real insulators, and degenerate gapped metals. Appl. Phys. Rev. 7, 041310 (2020).
Google Scholar
Zhang, X., Zhang, L., Perkins, J. D. & Zunger, A. Intrinsic transparent conductors without doping. Phys. Rev. Lett. 115, 176602 (2015).
Google Scholar
Gjerding, M. N., Pandey, M. & Thygesen, K. S. Band structure engineered layered metals for low-loss plasmonics. Nat. Commun. 8, 15133 (2017).
Google Scholar
Wang, G. et al. Design of intrinsic transparent conductors from a synergetic effect of symmetry and spatial-distribution forbidden transitions. Phys. Rev. Lett. 134, 036401 (2025).
Google Scholar
Hu, X. et al. High-throughput search for lossless metals. Phys. Rev. Mater. 6, 065203 (2022).
Google Scholar
Jérome, D. The physics of organic superconductors. Science 252, 1509–1514 (1991).
Google Scholar
Jacko, A. C. et al. Electronic properties of Fabre charge-transfer salts under various temperature and pressure conditions. Phys. Rev. B 87, 155139 (2013).
Google Scholar
Korin-Hamzić, B., Tafra, E., Basletić, M., Hamzić, A. & Dressel, M. Conduction anisotropy and Hall effect in the organic conductor (TMTTF)2AsF6: evidence for Luttinger liquid behavior and charge ordering. Phys. Rev. B 73, 115102 (2006).
Google Scholar
Korzeb, K., Gajc, M. & Pawlak, D. A. Compendium of natural hyperbolic materials. Opt. Express 23, 25406–25424 (2015).
Google Scholar
Farges, J.-P. Organic Conductors: Fundamentals and Applications 138–140 (CRC Press, 1994).
Dressel, M. et al. Charge and spin dynamics of TMTSF and TMTTF salts. Synth. Met. 120, 719–720 (2001).
Google Scholar
Köhler, B., Rose, E., Dumm, M., Untereiner, G. & Dressel, M. Comprehensive transport study of anisotropy and ordering phenomena in quasi-one-dimensional (TMTTF)2X salts (X = PF6, AsF6, SbF6, BF4, ClO4, ReO4). Phys. Rev. B 84, 035124 (2011).
Google Scholar
Itoi, M., Araki, C., Hedo, M., Uwatoko, Y. & Nakamura, T. Anomalously wide superconducting phase of one-dimensional organic conductor (TMTTF)2SbF6. J. Phys. Soc. Jpn 77, 023701 (2008).
Google Scholar
Naik, G. V., Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013).
Google Scholar
Vescoli, V., Degiorgi, L., Starkey, K. P. & Montgomery, L. K. Anisotropy in the optical response of (TMTTF)2X (X=PF6 and Br) Bechgaard salts. Solid State Commun. 111, 507–512 (1999).
Google Scholar
Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nat. Photon. 7, 948–957 (2013).
Google Scholar
Jellison, G. E., Podraza, N. J. & Shan, A. Ellipsometry: dielectric functions of anisotropic crystals and symmetry. J. Opt. Soc. Am. A 39, 2225–2237 (2022).
Google Scholar
Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications 137–138 (John Wiley & Sons, 2007).
Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).
Google Scholar
Yang, H. U. et al. Optical dielectric function of silver. Phys. Rev. B 91, 235137 (2015).
Google Scholar
Secondo, R., Khurgin, J. & Kinsey, N. Absorptive loss and band non-parabolicity as a physical origin of large nonlinearity in epsilon-near-zero materials. Opt. Mater. Express 10, 1545–1560 (2020).
Google Scholar
Zhang, C. et al. Unraveling Urbach tail effects in high-performance organic photovoltaics: dynamic vs static disorder. ACS Energy Lett. 7, 1971–1979 (2022).
Google Scholar
Ugur, E. et al. Life on the Urbach edge. J. Phys. Chem. Lett. 13, 7702–7711 (2022).
Google Scholar
Khusayfan, N. M. & El-Nahass, M. M. Study of structure and electro-optical characteristics of indium tin oxide thin films. Adv. Condens. Matter Phys. 2013, e408182 (2013).
Smith, N. V. Optical constants of sodium and potassium from 0.5 to 4.0 eV by split-beam ellipsometry. Phys. Rev. 183, 634–644 (1969).
Google Scholar
Graja, A. Low-Dimensional Organic Conductors (World Scientific, 1992).
Xie, L. S., Skorupskii, G. & Dinca, M. Electrically conductive metal–organic frameworks. Chem. Rev. 120, 8536–8580 (2020).
Google Scholar
Eshaghi, A. & Graeli, A. Optical and electrical properties of indium tin oxide (ITO) nanostructured thin films deposited on polycarbonate substrates ‘thickness effect’. Optik 125, 1478–1481 (2014).
Google Scholar
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272–1276 (2011).
Google Scholar
Hafner, J. Ab-initio simulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 29, 2044–2078 (2008).
Google Scholar
Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).
Google Scholar
Wu, Z. Dataset: hyper-gap transparent conductor. Zenodo https://doi.org/10.5281/zenodo.15228102 (2025).