• June 7, 2025
  • Live Match Score
  • 0


  • Caliari, S. R. & Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 13, 405–414 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong, C. & Lv, Y. Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers 8, 42 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brown, R. A. In the beginning there were soft collagen-cell gels: towards better 3D connective tissue models? Exp. Cell. Res. 319, 2460–2469 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hong, H. et al. Multi-scale fabrication techniques of collagen hydrogel for developing physiological 3D in vitro barrier model. Int. J. Precis. Eng. Manuf. 23, 227–254 (2022).

    Article 

    Google Scholar 

  • Tran-Ba, K.-H., Lee, D. J., Zhu, J., Paeng, K. & Kaufman, L. J. Confocal rheology probes the structure and mechanics of collagen through the sol-gel transition. Biophys. J. 113, 1882–1892 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holder, A. J. et al. Control of collagen gel mechanical properties through manipulation of gelation conditions near the sol–gel transition. Soft Matter 14, 574–580 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yaari, A., Schilt, Y., Tamburu, C., Raviv, U. & Shoseyov, O. Wet spinning and drawing of human recombinant collagen. ACS Biomater. Sci. Eng. 2, 349–360 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mailand, E. et al. Tissue engineering with mechanically induced solid-fluid transitions. Adv. Mater. 34, 2106149 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kajave, N. S., Schmitt, T., Nguyen, T.-U. & Kishore, V. Dual crosslinking strategy to generate mechanically viable cell-laden printable constructs using methacrylated collagen bioinks. Mater. Sci. Eng. C 107, 110290 (2020).

    Article 
    CAS 

    Google Scholar 

  • Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wolf, K. et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069–1084 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murphy, C. M., Haugh, M. G. & O’Brien, F. J. The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31, 461–466 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. 3D printed collagen structures at low concentrations supported by jammed microgels. Bioprinting 21, e00121 (2021).

    Article 

    Google Scholar 

  • Hofer, M. & Lutolf, M. P. Engineering organoids. Nat. Rev. Mater. 6, 402–420 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seo, B. R. et al. Collagen microarchitecture mechanically controls myofibroblast differentiation. Proc. Natl Acad. Sci. USA 117, 11387–11398 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y., Asadi, A., Monroe, M. R. & Douglas, E. P. pH effects on collagen fibrillogenesis in vitro: electrostatic interactions and phosphate binding. Mater. Sci. Eng. C 29, 1643–1649 (2009).

    Article 
    CAS 

    Google Scholar 

  • Oh, S., Nguyen, Q. D., Chung, K.-H. & Lee, H. Bundling of collagen fibrils using sodium sulfate for biomimetic cell culturing. ACS Omega 5, 3444–3452 (2020).

  • Santos, M. I. et al. Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering. Biomaterials 29, 4306–4313 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dessalles, C. A., Leclech, C., Castagnino, A. & Barakat, A. I. Integration of substrate- and flow-derived stresses in endothelial cell mechanobiology. Commun. Biol. 4, 764 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, J. S. et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11, 768–774 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Daly, A. C., Davidson, M. D. & Burdick, J. A. 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nat. Commun. 12, 753 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bernal, P. N. et al. Volumetric bioprinting of organoids and optically tuned hydrogels to build liver-like metabolic biofactories. Adv. Mater. 34, 2110054 (2022).

    Article 
    CAS 

    Google Scholar 

  • Nikolaev, M. et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 585, 574–578 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Lawlor, K. T. et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nat. Mater. 20, 260–271 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kang, H.-W. et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312–319 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brassard, J. A., Nikolaev, M., Hübscher, T., Hofer, M. & Lutolf, M. P. Recapitulating macro-scale tissue self-organization through organoid bioprinting. Nat. Mater. 20, 22–29 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lorenzo-Martín, L. F. et al. Spatiotemporally resolved colorectal oncogenesis in mini-colons ex vivo. Nature 629, 450–457 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spence, J. R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–109 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Buehler, M. J. Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc. Natl Acad. Sci. USA 103, 12285–12290 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Connizzo, B. K., Yannascoli, S. M. & Soslowsky, L. J. Structure–function relationships of postnatal tendon development: a parallel to healing. Matrix Biol. 32, 106–116 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salvatore, L. et al. Mimicking the hierarchical organization of natural collagen: toward the development of ideal scaffolding material for tissue regeneration. Front. Bioeng. Biotechnol. 9, 644595 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moxon, S. R. et al. Suspended manufacture of biological structures. Adv. Mater. 29, 1605594 (2017).

    Article 

    Google Scholar 

  • Hinton, T. J. et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 1, e1500758 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Osidak, E. O., Kozhukhov, V. I., Osidak, M. S. & Domogatsky, S. P. Collagen as bioink for bioprinting: a comprehensive review. Int. J. Bioprinting 6, 270 (2020).

    Article 
    CAS 

    Google Scholar 

  • Lei, I. M. et al. Soft hydrogel shapeability via supportive bath matching in embedded 3D printing. Adv. Mater. Technol. 8, 2300001 (2023).

    Article 
    CAS 

    Google Scholar 

  • Li, Q. et al. Regulable supporting baths for embedded printing of soft biomaterials with variable stiffness. ACS Appl. Mater. Interfaces 14, 41695–41711 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, Y. et al. A platform for generation of chamber-specific cardiac tissues and disease modeling. Cell 176, 913–927.e18 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Skylar-Scott, M. A. et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5, eaaw2459 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lavrador, P., Moura, B. S., Almeida-Pinto, J., Gaspar, V. M. & Mano, J. F. Engineered nascent living human tissues with unit programmability. Nat. Mater. 24, 143–154 (2024).

  • Choi, S. et al. Fibre-infused gel scaffolds guide cardiomyocyte alignment in 3D-printed ventricles. Nat. Mater. 22, 1039–1046 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fang, Y. et al. Expanding embedded 3D bioprinting capability for engineering complex organs with freeform vascular networks. Adv. Mater. 35, 2205082 (2023).

    Article 
    CAS 

    Google Scholar 

  • Johnson, T. D. et al. Quantification of decellularized human myocardial matrix: a comparison of six patients. Prot. Clin. Appl. 10, 75–83 (2016).

    Article 
    CAS 

    Google Scholar 

  • Hata, Y., Sawada, T. & Serizawa, T. Macromolecular crowding for materials-directed controlled self-assembly. J. Mater. Chem. B 6, 6344–6359 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Saeidi, N. et al. Molecular crowding of collagen: a pathway to produce highly-organized collagenous structures. Biomaterials 33, 7366–7374 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ng, W. L., Goh, M. H., Yeong, W. Y. & Naing, M. W. Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs. Biomater. Sci. 6, 562–574 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Magno, V. et al. Macromolecular crowding for tailoring tissue-derived fibrillated matrices. Acta Biomater. 55, 109–119 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dewavrin, J.-Y., Hamzavi, N., Shim, V. P. W. & Raghunath, M. Tuning the architecture of three-dimensional collagen hydrogels by physiological macromolecular crowding. Acta Biomater. 10, 4351–4359 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ranamukhaarachchi, S. K. et al. Macromolecular crowding tunes 3D collagen architecture and cell morphogenesis. Biomater. Sci. 7, 618–633 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doube, M. et al. BoneJ: free and extensible bone image analysis in ImageJ. Bone 47, 1076–1079 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duraivel, S. et al. A silicone-based support material eliminates interfacial instabilities in 3D silicone printing. Science 379, 1248–1252 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *