
Hackett, T. L. & Osei, E. T. Modeling extracellular matrix-cell interactions in lung repair and chronic disease. Cells 10, 2145 (2021).
Google Scholar
Burgstaller, G. et al. The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease. Eur. Respir. J. 50, 1601805 (2017).
Google Scholar
Naba, A. et al. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell. Proteom. 11, M111.014647 (2012).
Balestrini, J. L. & Niklason, L. E. Extracellular matrix as a driver for lung regeneration. Ann. Biomed. Eng. 43, 568 (2015).
Google Scholar
Waters, C. M., Roan, E. & Navajas, D. Mechanobiology in lung epithelial cells: measurements, perturbations, and responses. Compr. Physiol. 2, 1–29 (2012).
Google Scholar
Zhou, Y. et al. Extracellular matrix in lung development, homeostasis and disease. Matrix Biol. 73, 77–104 (2018).
Google Scholar
Martinez, F. J. et al. Idiopathic pulmonary fibrosis. Nat. Rev. Dis. Prim. 3, 17074 (2017).
Google Scholar
Larsen, B. T. Usual interstitial pneumonia: a clinically significant pattern, but not the final word. Mod. Pathol. 35, 589–593 (2022).
Google Scholar
Burgess, C. L. et al. Generation of human alveolar epithelial type I cells from pluripotent stem cells. Cell Stem Cell 31, 657–675.e8 (2024).
Google Scholar
Shiraishi, K. et al. Biophysical forces mediated by respiration maintain lung alveolar epithelial cell fate. Cell 186, 1478–1492.e15 (2023).
Google Scholar
Li, J. et al. The strength of mechanical forces determines the differentiation of alveolar epithelial cells. Dev. Cell 44, 297–312.e5 (2018).
Google Scholar
Hogan, B. L. M. et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15, 123–138 (2014).
Google Scholar
Desai, T. J., Brownfield, D. G. & Krasnow, M. A. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 507, 190–194 (2014).
Google Scholar
Jiang, P. et al. Ineffectual type 2 to type 1 alveolar epithelial cell differentiation in idiopathic pulmonary fibrosis: persistence of the KRT8hi transitional state. Am. J. Respir. Crit. Care Med 201, 1443–1447 (2020).
Google Scholar
Kobayashi, Y. et al. Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat. Cell Biol. 22, 934–946 (2020).
Google Scholar
Strunz, M. et al. Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nat. Commun. https://doi.org/10.1038/s41467-020-17358-3 (2020).
Google Scholar
Wolters, P. J., Collard, H. R. & Jones, K. D. Pathogenesis of idiopathic pulmonary fibrosis. Annu. Rev. Pathol. Mech. Dis. 9, 157–179 (2014).
Google Scholar
Herrera, J., Henke, C. A. & Bitterman, P. B. Extracellular matrix as a driver of progressive fibrosis. J. Clin. Invest. 128, 45–53 (2018).
Google Scholar
Liu, F. et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J. Cell Biol. 190, 693–706 (2010).
Google Scholar
Tschumperlin, D. J. Matrix, mesenchyme, and mechanotransduction. Ann. Am. Thorac. Soc. 12, S24–S29 (2015).
Google Scholar
Wang, N., Butler, J. P. & Ingber, D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127 (1993).
Google Scholar
Rosmark, O. et al. Alveolar epithelial cells are competent producers of interstitial extracellular matrix with disease relevant plasticity in a human in vitro 3D model. Sci. Rep. 13, 8801 (2023).
Google Scholar
Huang, X. et al. Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction. Am. J. Respir. Cell Mol. Biol. 47, 340–348 (2012).
Locy, M. L. et al. Oxidative cross-linking of fibronectin confers protease resistance and inhibits cellular migration. Sci. Signal. 13, eaay8292 (2020).
Cruz, L. C. et al. Identification of tyrosine brominated extracellular matrix proteins in normal and fibrotic lung tissues. Redox Biol. 71, 103102 (2024).
Google Scholar
Bello, A. B., Kim, D., Kim, D., Park, H. & Lee, S. H. Engineering and functionalization of gelatin biomaterials: from cell culture to medical applications. Tissue Eng. Part B 26, 164–180 (2020).
Google Scholar
Robinson, M., Douglas, S. & Willerth, S. M. Mechanically stable fibrin scaffolds promote viability and induce neurite outgrowth in neural aggregates derived from human induced pluripotent stem cells. Sci. Rep. 7, 6250 (2017).
Google Scholar
Eyrich, D. et al. Long-term stable fibrin gels for cartilage engineering. Biomaterials 28, 55–65 (2007).
Google Scholar
Lou, J., Stowers, R., Nam, S., Xia, Y. & Chaudhuri, O. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials 154, 213–222 (2018).
Google Scholar
Caliari, S. R. & Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 13, 405–414 (2016).
Google Scholar
Guvendiren, M. & Burdick, J. A. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat. Commun. 3, 792 (2012).
Google Scholar
Caliari, S. R. et al. Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation. Sci. Rep. 6, 21387 (2016).
Google Scholar
Li, X. et al. Dynamic stiffening hydrogel with instructive stiffening timing modulates stem cell fate in vitro and enhances bone remodeling in vivo. Adv. Health. Mater. 12, 2300326 (2023).
Google Scholar
Vashi, A. V., Werkmeister, J. A., Vuocolo, T., Elvin, C. M. & Ramshaw, J. A. M. M. Stabilization of collagen tissues by photocrosslinking. J. Biomed. Mater. Res. A 100A, 2239–2243 (2012).
Google Scholar
Kang, B. et al. Facile bioprinting process for fabricating size‐controllable functional microtissues using light‐activated decellularized extracellular matrix‐based bioinks. Adv. Mater. Technol. 7, 2100947 (2022).
Google Scholar
Kim, H. et al. Light‐activated decellularized extracellular matrix‐based bioinks for volumetric tissue analogs at the centimeter scale. Adv. Funct. Mater. 31, 2011252 (2021).
Google Scholar
Barkauskas, C. E. et al. Type 2 alveolar cells are stem cells in adult lung. J. Clin. Invest. 123, 3025–3036 (2013).
Google Scholar
Kotton, D. N. & Morrisey, E. E. Lung regeneration: mechanisms, applications and emerging stem cell populations. Nat. Med. 20, 822–832 (2014).
Google Scholar
Parimon, T., Yao, C., Stripp, B. R., Noble, P. W. & Chen, P. Alveolar epithelial type II cells as drivers of lung fibrosis in idiopathic pulmonary fibrosis. Int. J. Mol. Sci. 21, 2269 (2020).
Google Scholar
Winters, N. I., Burman, A., Kropski, J. A. & Blackwell, T. S. Epithelial injury and dysfunction in the pathogenesis of idiopathic pulmonary fibrosis. Am. J. Med. Sci. 357, 374–378 (2019).
Chambers, R. C. & Mercer, P. F. Mechanisms of alveolar epithelial injury, repair, and fibrosis. Ann. Am. Thorac. Soc. 12, S16–S20 (2015).
Toth, A. et al. Alveolar epithelial progenitor cells require Nkx2-1 to maintain progenitor-specific epigenomic state during lung homeostasis and regeneration. Nat. Commun. 14, 8452 (2023).
Google Scholar
Onursal, C., Dick, E., Angelidis, I., Schiller, H. B. & Staab-Weijnitz, C. A. Collagen biosynthesis, processing, and maturation in lung ageing. Front. Med. 8, 593874 (2021).
Laurent, G. J. Rates of collagen synthesis in lung, skin and muscle obtained in vivo by a simplified method using [3H]proline. Biochem. J. 206, 535–544 (1982).
Google Scholar
Blaskovic, S. et al. Di-tyrosine crosslinking and NOX4 expression as oxidative pathological markers in the lungs of patients with idiopathic pulmonary fibrosis. Antioxidants 10, 1833 (2021).
Google Scholar
Fancy, D. A. & Kodadek, T. Chemistry for the analysis of protein-protein interactions: rapid and efficient cross-linking triggered by long wavelength light. Proc. Natl Acad. Sci. USA 96, 6020–6024 (1999).
Google Scholar
Bjork, J. W., Johnson, S. L. & Tranquillo, R. T. Ruthenium-catalyzed photo cross-linking of fibrin-based engineered tissue. Biomaterials 32, 2479 (2011).
Google Scholar
Maina, M. B., Al-Hilaly, Y. K. & Serpell, L. C. Dityrosine cross-linking and its potential roles in Alzheimer’s disease. Front. Neurosci. 17, 1132670 (2023).
Google Scholar
Liu, C., Hua, J., Ng, P. F. & Fei, B. Photochemistry of bioinspired dityrosine crosslinking. J. Mater. Sci. Technol. 63, 182–191 (2021).
Google Scholar
Marquez, L. A. & Dunford, H. B. Kinetics of oxidation of tyrosine and dityrosine by myeloperoxidase compounds I and II: implications for lipoprotein peroxidation studies. J. Biol. Chem. 270, 30434–30440 (1995).
Google Scholar
Hafidz, R. N. R. M., Yaakob, C. M., Amin, I. & Noorfaizan, A. Chemical and functional properties of bovine and porcine skin gelatin. Int. Food Res. J. 18, 813–817 (2011).
Google Scholar
EASTOE, J. E. The amino acid composition of mammalian collagen and gelatin. Biochem. J. 61, 589–600 (1955).
Google Scholar
Akram, K. M. et al. Live imaging of alveologenesis in precision-cut lung slices reveals dynamic epithelial cell behaviour. Nat. Commun. 10, 1178 (2019).
Google Scholar
Sanderson, M. J. Exploring lung physiology in health and disease with lung slices. Pulm. Pharm. Ther. 24, 452–465 (2011).
Google Scholar
Zhao, F. et al. Fibroblast alignment and matrix remodeling induced by a stiffness gradient in a skin-derived extracellular matrix hydrogel. Acta Biomater. 182, 67–80 (2024).
Google Scholar
Nizamoglu, M. et al. Three dimensional fibrotic extracellular matrix directs microenvironment fiber remodeling by fibroblasts. Acta Biomater. 177, 118–131 (2024).
Google Scholar
Nizamoglu, M. et al. An in vitro model of fibrosis using crosslinked native extracellular matrix-derived hydrogels to modulate biomechanics without changing composition. Acta Biomater. 147, 50–62 (2022).
Google Scholar
Matera, D. L. et al. Microengineered 3D pulmonary interstitial mimetics highlight a critical role for matrix degradation in myofibroblast differentiation. Sci. Adv. 6, eabb5069 (2020).
Google Scholar
Liu, F. & Tschumperlin, D. J. Micro-mechanical characterization of lung tissue using atomic force microscopy. J. Vis. Exp. 2011, 2911 (2011).
Liu, H. Y., Nguyen, H. D. & Lin, C. C. Dynamic PEG–peptide hydrogels via visible light and FMN-induced tyrosine dimerization. Adv. Health. Mater. 7, 1800954 (2018).
Bryson, K. J. et al. Precision cut lung slices: a novel versatile tool to examine host-pathogen interaction in the chicken lung. Vet. Res. 51, 2 (2020).
Google Scholar
Hesse, C. et al. Nintedanib modulates type III collagen turnover in viable precision-cut lung slices from bleomycin-treated rats and patients with pulmonary fibrosis. Respir. Res. 23, 201 (2022).
Google Scholar
Preuß, E. B. et al. The challenge of long-term cultivation of human precision-cut lung slices. Am. J. Pathol. 192, 239–253 (2022).
Google Scholar
Pieretti, A. C., Ahmed, A. M., Roberts, J. D. & Kelleher, C. M. A novel in vitro model to study alveologenesis. Am. J. Respir. Cell Mol. Biol. 50, 459–469 (2014).
Google Scholar
Hoffman, E. T. et al. Human alveolar hydrogels promote morphological and transcriptional differentiation in iPSC-derived alveolar type 2 epithelial cells. Sci. Rep. 13, 12057 (2023).
Google Scholar
Chioccioli, M. et al. Stem cell migration drives lung repair in living mice. Dev. Cell 59, 830–840.e4 (2024).
Google Scholar
LaCanna, R. et al. Yap/Taz regulate alveolar regeneration and resolution of lung inflammation. J. Clin. Invest. 129, 2107–2122 (2019).
Google Scholar
Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).
Google Scholar
Dai, Y. et al. Dimethyl fumarate promotes the degradation of HNF1B and suppresses the progression of clear cell renal cell carcinoma. Cell Death Dis. 16, 71 (2025).
Google Scholar
Warren, R., Lyu, H., Klinkhammer, K. & De Langhe, S. P. Hippo signaling impairs alveolar epithelial regeneration in pulmonary fibrosis. eLife 12, e85092 (2023).
Google Scholar
Hammer, A. et al. The NRF2 pathway as potential biomarker for dimethyl fumarate treatment in multiple sclerosis. Ann. Clin. Transl. Neurol. 5, 668 (2018).
Google Scholar
Penkala, I. J. et al. Age-dependent alveolar epithelial plasticity orchestrates lung homeostasis and regeneration. Cell Stem Cell 28, 1775–1789.e5 (2021).
Google Scholar
Yao, C. et al. Senescence of alveolar type 2 cells drives progressive pulmonary fibrosis. Am. J. Respir. Crit. Care Med 203, 707–717 (2021).
Google Scholar
Wang, Z. et al. Enhanced glycolysis-mediated energy production in alveolar stem cells is required for alveolar regeneration. Cell Stem Cell 30, 1028–1042.e7 (2023).
Google Scholar
Coppé, J.-P., Desprez, P.-Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. Mech. Dis. 5, 99–118 (2010).
Lundien, M. C. et al. Induction of MCP-1 expression in airway epithelial cells: role of CCR2 receptor in airway epithelial injury. J. Clin. Immunol. 22, 144–152 (2002).
Google Scholar
Wang, Y., Wang, L., Ma, S., Cheng, L. & Yu, G. Repair and regeneration of the alveolar epithelium in lung injury. FASEB J. 38, e23612 (2024).
Google Scholar
Wang, F. et al. Regulation of epithelial transitional states in murine and human pulmonary fibrosis. J. Clin. Invest. 133, e165612 (2023).
Google Scholar
Liang, J. et al. Reciprocal interactions between alveolar progenitor dysfunction and aging promote lung fibrosis. eLife 12, 85415 (2023).
Loebel, C., Mauck, R. L. & Burdick, J. A. Local nascent protein deposition and remodelling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nat. Mater. 18, 883–891 (2019).
Google Scholar
Loebel, C. et al. Metabolic labeling of secreted matrix to investigate cell–material interactions in tissue engineering and mechanobiology. Nat. Protoc. 17, 618–648 (2022).
Google Scholar
Blache, U., Stevens, M. M. & Gentleman, E. Harnessing the secreted extracellular matrix to engineer tissues. Nat. Biomed. Eng. 4, 357–363 (2020).
Google Scholar
Hamill, K. J., Kligys, K., Hopkinson, S. B. & Jones, J. C. R. Laminin deposition in the extracellular matrix: a complex picture emerges. J. Cell Sci. 122, 4409 (2009).
Google Scholar
Schuger, L. Laminins in lung development. Exp. Lung Res. 23, 119–129 (1997).
Google Scholar
Lee, C. M. et al. Laminin α1 is a genetic modifier of TGF-β1–stimulated pulmonary fibrosis. JCI Insight 3, e99574 (2018).
Google Scholar
Lappi-Blanco, E. et al. Laminin-5 γ2 chain in cryptogenic organizing pneumonia and idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 169, 27–33 (2012).
Morales-Nebreda, L. I. et al. Lung-specific loss of a3 laminin worsens bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 52, 503–512 (2015).
Google Scholar
Blokland, K. E. C., Pouwels, S. D., Schuliga, M., Knight, D. A. & Burgess, J. K. Regulation of cellular senescence by extracellular matrix during chronic fibrotic diseases. Clin. Sci. 134, 2681 (2020).
Google Scholar
Upagupta, C., Shimbori, C., Alsilmi, R. & Kolb, M. Matrix abnormalities in pulmonary fibrosis. Eur. Resp. Rev. 27, 180033 (2018).
Doherty, D. F., Roets, L. & Krasnodembskaya, A. D. The role of lung resident mesenchymal stromal cells in the pathogenesis and repair of chronic lung disease. Stem Cells 41, 431–443 (2023).
Google Scholar
Alvarez-Castelao, B. et al. Cell-type-specific metabolic labeling of nascent proteomes in vivo. Nat. Biotechnol. 35, 1196–1201 (2017).
Google Scholar
Plosa, E. J. et al. β1 integrin regulates adult lung alveolar epithelial cell inflammation. JCI Insight 5, e129259 (2020).
Google Scholar
Smith, M. L. et al. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol. 5, e268 (2007).
Google Scholar
Humphries, J. D., Byron, A. & Humphries, M. J. Integrin ligands at a glance. J. Cell Sci. 119, 3901–3903 (2006).
Google Scholar
Takahashi, S. et al. The RGD motif in fibronectin is essential for development but dispensable for fibril assembly. J. Cell Biol. 178, 167 (2007).
Google Scholar
Hao, N. et al. Laminin-integrin a6b4 interaction activates notch signaling to facilitate bladder cancer development. BMC Cancer 22, 558 (2022).
Google Scholar
Sucre, J. M. S. et al. Alveolar repair following LPS-induced injury requires cell-ECM interactions. JCI Insight 8, e167211 (2023).
Google Scholar
Young, M. W. et al. Synthetic photoresponsive hydrogels enable in situ control over murine intestinal monolayer differentiation and crypt formation. Adv. Funct. Mater. 35, 2413778 (2024).
Google Scholar
Nelson, B. R. et al. Photoinduced dithiolane crosslinking for multiresponsive dynamic hydrogels. Adv. Mater. 36, 2211209 (2023).
Wu, H. et al. Progressive pulmonary fibrosis is caused by elevated mechanical tension on alveolar stem. Cell 180, 107–121.e17 (2020).
Google Scholar
Bian, F. et al. Lung endothelial cells regulate pulmonary fibrosis through FOXF1/R-Ras signaling. Nat. Commun. 14, 2560 (2023).
Google Scholar
Zhao, W. et al. Endothelial cell-derived MMP19 promotes pulmonary fibrosis by inducing E(nd)MT and monocyte infiltration. Cell Commun. Signal. 21, 56 (2023).
Google Scholar
Simões, F. C. et al. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nat. Commun. 11, 600 (2020).
Google Scholar
Bailey, K. E. et al. Embedding of precision-cut lung slices in engineered hydrogel biomaterials supports extended ex vivo culture. Am. J. Respir. Cell Mol. Biol. 62, 14–22 (2020).
Google Scholar
Vlodavsky, I., Bar-Shavit, R., Ishar-Michael, R., Bashkin, P. & Fuks, Z. Extracellular sequestration and release of fibroblast growth factor: a regulatory mechanism? Trends Biochem. Sci. 16, 268–271 (1991).
Google Scholar
Banks, J. M., Mozdzen, L. C., Harley, B. A. C. & Bailey, R. C. The combined effects of matrix stiffness and growth factor immobilization on the bioactivity and differentiation capabilities of adipose-derived stem cells. Biomaterials 35, 8951–8959 (2014).
Google Scholar
Chang, H. et al. Substrate stiffness combined with hepatocyte growth factor modulates endothelial cell behavior. Biomacromolecules 17, 2767–2776 (2016).
Google Scholar
Han, B. et al. AFM-nanomechanical test: an interdisciplinary tool that links the understanding of cartilage and meniscus biomechanics, osteoarthritis degeneration, and tissue engineering. ACS Biomater. Sci. Eng. 3, 2033–2049 (2017).
Google Scholar
Kawamoto, T. & Kawamoto, K. Preparation of thin frozen sections from nonfixed and undecalcified hard tissues using Kawamoto’s film method (2020). Methods Mol. Biol. 2230, 259–281 (2021).
Google Scholar
Kwok, B. et al. Rapid specialization and stiffening of the primitive matrix in developing articular cartilage and meniscus. Acta Biomater. 168, 235–251 (2023).
Google Scholar
Al-Mayah, A., Moseley, J., Velec, M. & Brock, K. K. Sliding characteristic and material compressibility of human lung: parametric study and verification. Med. Phys. 36, 4625–4633 (2009).
Google Scholar
Chapman, H. A. et al. Integrin α6β4 identifies an adult distal lung epithelial population with regenerative potential in mice. J. Clin. Invest. 121, 2855–2862 (2011).
Google Scholar
Achreja, A. et al. Metabolic collateral lethal target identification reveals MTHFD2 paralogue dependency in ovarian cancer. Nat. Metab. 4, 1119–1137 (2022).
Google Scholar
Zhu, Z. et al. Tumour-reprogrammed stromal BCAT1 fuels branched-chain ketoacid dependency in stromal-rich PDAC tumours. Nat. Metab. 2, 775–792 (2020).
Google Scholar
Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cyber. SMC-9, 62–66 (1979).
Hu, Y., Becker, M. L. & Willits, R. K. Quantification of cell migration: metrics selection to model application. Front. Cell Dev. Biol. 11, 1155882 (2023).
Google Scholar
Vaidžiulytė, K. et al. Persistent cell migration emerges from a coupling between protrusion dynamics and polarized trafficking. eLife 11, e69229 (2022).
Google Scholar