• September 5, 2025
  • Live Match Score
  • 0


  • Hackett, T. L. & Osei, E. T. Modeling extracellular matrix-cell interactions in lung repair and chronic disease. Cells 10, 2145 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burgstaller, G. et al. The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease. Eur. Respir. J. 50, 1601805 (2017).

    PubMed 

    Google Scholar 

  • Naba, A. et al. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell. Proteom. 11, M111.014647 (2012).

    Google Scholar 

  • Balestrini, J. L. & Niklason, L. E. Extracellular matrix as a driver for lung regeneration. Ann. Biomed. Eng. 43, 568 (2015).

    PubMed 

    Google Scholar 

  • Waters, C. M., Roan, E. & Navajas, D. Mechanobiology in lung epithelial cells: measurements, perturbations, and responses. Compr. Physiol. 2, 1–29 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, Y. et al. Extracellular matrix in lung development, homeostasis and disease. Matrix Biol. 73, 77–104 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martinez, F. J. et al. Idiopathic pulmonary fibrosis. Nat. Rev. Dis. Prim. 3, 17074 (2017).

    PubMed 

    Google Scholar 

  • Larsen, B. T. Usual interstitial pneumonia: a clinically significant pattern, but not the final word. Mod. Pathol. 35, 589–593 (2022).

    PubMed 

    Google Scholar 

  • Burgess, C. L. et al. Generation of human alveolar epithelial type I cells from pluripotent stem cells. Cell Stem Cell 31, 657–675.e8 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shiraishi, K. et al. Biophysical forces mediated by respiration maintain lung alveolar epithelial cell fate. Cell 186, 1478–1492.e15 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, J. et al. The strength of mechanical forces determines the differentiation of alveolar epithelial cells. Dev. Cell 44, 297–312.e5 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Hogan, B. L. M. et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15, 123–138 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Desai, T. J., Brownfield, D. G. & Krasnow, M. A. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 507, 190–194 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, P. et al. Ineffectual type 2 to type 1 alveolar epithelial cell differentiation in idiopathic pulmonary fibrosis: persistence of the KRT8hi transitional state. Am. J. Respir. Crit. Care Med 201, 1443–1447 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kobayashi, Y. et al. Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat. Cell Biol. 22, 934–946 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Strunz, M. et al. Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nat. Commun. https://doi.org/10.1038/s41467-020-17358-3 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wolters, P. J., Collard, H. R. & Jones, K. D. Pathogenesis of idiopathic pulmonary fibrosis. Annu. Rev. Pathol. Mech. Dis. 9, 157–179 (2014).

    CAS 

    Google Scholar 

  • Herrera, J., Henke, C. A. & Bitterman, P. B. Extracellular matrix as a driver of progressive fibrosis. J. Clin. Invest. 128, 45–53 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, F. et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J. Cell Biol. 190, 693–706 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tschumperlin, D. J. Matrix, mesenchyme, and mechanotransduction. Ann. Am. Thorac. Soc. 12, S24–S29 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, N., Butler, J. P. & Ingber, D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • Rosmark, O. et al. Alveolar epithelial cells are competent producers of interstitial extracellular matrix with disease relevant plasticity in a human in vitro 3D model. Sci. Rep. 13, 8801 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, X. et al. Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction. Am. J. Respir. Cell Mol. Biol. 47, 340–348 (2012).

  • Locy, M. L. et al. Oxidative cross-linking of fibronectin confers protease resistance and inhibits cellular migration. Sci. Signal. 13, eaay8292 (2020).

  • Cruz, L. C. et al. Identification of tyrosine brominated extracellular matrix proteins in normal and fibrotic lung tissues. Redox Biol. 71, 103102 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bello, A. B., Kim, D., Kim, D., Park, H. & Lee, S. H. Engineering and functionalization of gelatin biomaterials: from cell culture to medical applications. Tissue Eng. Part B 26, 164–180 (2020).

    CAS 

    Google Scholar 

  • Robinson, M., Douglas, S. & Willerth, S. M. Mechanically stable fibrin scaffolds promote viability and induce neurite outgrowth in neural aggregates derived from human induced pluripotent stem cells. Sci. Rep. 7, 6250 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Eyrich, D. et al. Long-term stable fibrin gels for cartilage engineering. Biomaterials 28, 55–65 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Lou, J., Stowers, R., Nam, S., Xia, Y. & Chaudhuri, O. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials 154, 213–222 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Caliari, S. R. & Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 13, 405–414 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guvendiren, M. & Burdick, J. A. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat. Commun. 3, 792 (2012).

    PubMed 

    Google Scholar 

  • Caliari, S. R. et al. Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation. Sci. Rep. 6, 21387 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, X. et al. Dynamic stiffening hydrogel with instructive stiffening timing modulates stem cell fate in vitro and enhances bone remodeling in vivo. Adv. Health. Mater. 12, 2300326 (2023).

    CAS 

    Google Scholar 

  • Vashi, A. V., Werkmeister, J. A., Vuocolo, T., Elvin, C. M. & Ramshaw, J. A. M. M. Stabilization of collagen tissues by photocrosslinking. J. Biomed. Mater. Res. A 100A, 2239–2243 (2012).

    CAS 

    Google Scholar 

  • Kang, B. et al. Facile bioprinting process for fabricating size‐controllable functional microtissues using light‐activated decellularized extracellular matrix‐based bioinks. Adv. Mater. Technol. 7, 2100947 (2022).

    CAS 

    Google Scholar 

  • Kim, H. et al. Light‐activated decellularized extracellular matrix‐based bioinks for volumetric tissue analogs at the centimeter scale. Adv. Funct. Mater. 31, 2011252 (2021).

    CAS 

    Google Scholar 

  • Barkauskas, C. E. et al. Type 2 alveolar cells are stem cells in adult lung. J. Clin. Invest. 123, 3025–3036 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kotton, D. N. & Morrisey, E. E. Lung regeneration: mechanisms, applications and emerging stem cell populations. Nat. Med. 20, 822–832 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parimon, T., Yao, C., Stripp, B. R., Noble, P. W. & Chen, P. Alveolar epithelial type II cells as drivers of lung fibrosis in idiopathic pulmonary fibrosis. Int. J. Mol. Sci. 21, 2269 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Winters, N. I., Burman, A., Kropski, J. A. & Blackwell, T. S. Epithelial injury and dysfunction in the pathogenesis of idiopathic pulmonary fibrosis. Am. J. Med. Sci. 357, 374–378 (2019).

  • Chambers, R. C. & Mercer, P. F. Mechanisms of alveolar epithelial injury, repair, and fibrosis. Ann. Am. Thorac. Soc. 12, S16–S20 (2015).

  • Toth, A. et al. Alveolar epithelial progenitor cells require Nkx2-1 to maintain progenitor-specific epigenomic state during lung homeostasis and regeneration. Nat. Commun. 14, 8452 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Onursal, C., Dick, E., Angelidis, I., Schiller, H. B. & Staab-Weijnitz, C. A. Collagen biosynthesis, processing, and maturation in lung ageing. Front. Med. 8, 593874 (2021).

    Google Scholar 

  • Laurent, G. J. Rates of collagen synthesis in lung, skin and muscle obtained in vivo by a simplified method using [3H]proline. Biochem. J. 206, 535–544 (1982).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blaskovic, S. et al. Di-tyrosine crosslinking and NOX4 expression as oxidative pathological markers in the lungs of patients with idiopathic pulmonary fibrosis. Antioxidants 10, 1833 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fancy, D. A. & Kodadek, T. Chemistry for the analysis of protein-protein interactions: rapid and efficient cross-linking triggered by long wavelength light. Proc. Natl Acad. Sci. USA 96, 6020–6024 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bjork, J. W., Johnson, S. L. & Tranquillo, R. T. Ruthenium-catalyzed photo cross-linking of fibrin-based engineered tissue. Biomaterials 32, 2479 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Maina, M. B., Al-Hilaly, Y. K. & Serpell, L. C. Dityrosine cross-linking and its potential roles in Alzheimer’s disease. Front. Neurosci. 17, 1132670 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, C., Hua, J., Ng, P. F. & Fei, B. Photochemistry of bioinspired dityrosine crosslinking. J. Mater. Sci. Technol. 63, 182–191 (2021).

    CAS 

    Google Scholar 

  • Marquez, L. A. & Dunford, H. B. Kinetics of oxidation of tyrosine and dityrosine by myeloperoxidase compounds I and II: implications for lipoprotein peroxidation studies. J. Biol. Chem. 270, 30434–30440 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Hafidz, R. N. R. M., Yaakob, C. M., Amin, I. & Noorfaizan, A. Chemical and functional properties of bovine and porcine skin gelatin. Int. Food Res. J. 18, 813–817 (2011).

    CAS 

    Google Scholar 

  • EASTOE, J. E. The amino acid composition of mammalian collagen and gelatin. Biochem. J. 61, 589–600 (1955).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Akram, K. M. et al. Live imaging of alveologenesis in precision-cut lung slices reveals dynamic epithelial cell behaviour. Nat. Commun. 10, 1178 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanderson, M. J. Exploring lung physiology in health and disease with lung slices. Pulm. Pharm. Ther. 24, 452–465 (2011).

    CAS 

    Google Scholar 

  • Zhao, F. et al. Fibroblast alignment and matrix remodeling induced by a stiffness gradient in a skin-derived extracellular matrix hydrogel. Acta Biomater. 182, 67–80 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Nizamoglu, M. et al. Three dimensional fibrotic extracellular matrix directs microenvironment fiber remodeling by fibroblasts. Acta Biomater. 177, 118–131 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Nizamoglu, M. et al. An in vitro model of fibrosis using crosslinked native extracellular matrix-derived hydrogels to modulate biomechanics without changing composition. Acta Biomater. 147, 50–62 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Matera, D. L. et al. Microengineered 3D pulmonary interstitial mimetics highlight a critical role for matrix degradation in myofibroblast differentiation. Sci. Adv. 6, eabb5069 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, F. & Tschumperlin, D. J. Micro-mechanical characterization of lung tissue using atomic force microscopy. J. Vis. Exp. 2011, 2911 (2011).

  • Liu, H. Y., Nguyen, H. D. & Lin, C. C. Dynamic PEG–peptide hydrogels via visible light and FMN-induced tyrosine dimerization. Adv. Health. Mater. 7, 1800954 (2018).

    Google Scholar 

  • Bryson, K. J. et al. Precision cut lung slices: a novel versatile tool to examine host-pathogen interaction in the chicken lung. Vet. Res. 51, 2 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hesse, C. et al. Nintedanib modulates type III collagen turnover in viable precision-cut lung slices from bleomycin-treated rats and patients with pulmonary fibrosis. Respir. Res. 23, 201 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Preuß, E. B. et al. The challenge of long-term cultivation of human precision-cut lung slices. Am. J. Pathol. 192, 239–253 (2022).

    PubMed 

    Google Scholar 

  • Pieretti, A. C., Ahmed, A. M., Roberts, J. D. & Kelleher, C. M. A novel in vitro model to study alveologenesis. Am. J. Respir. Cell Mol. Biol. 50, 459–469 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoffman, E. T. et al. Human alveolar hydrogels promote morphological and transcriptional differentiation in iPSC-derived alveolar type 2 epithelial cells. Sci. Rep. 13, 12057 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chioccioli, M. et al. Stem cell migration drives lung repair in living mice. Dev. Cell 59, 830–840.e4 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • LaCanna, R. et al. Yap/Taz regulate alveolar regeneration and resolution of lung inflammation. J. Clin. Invest. 129, 2107–2122 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Dai, Y. et al. Dimethyl fumarate promotes the degradation of HNF1B and suppresses the progression of clear cell renal cell carcinoma. Cell Death Dis. 16, 71 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Warren, R., Lyu, H., Klinkhammer, K. & De Langhe, S. P. Hippo signaling impairs alveolar epithelial regeneration in pulmonary fibrosis. eLife 12, e85092 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hammer, A. et al. The NRF2 pathway as potential biomarker for dimethyl fumarate treatment in multiple sclerosis. Ann. Clin. Transl. Neurol. 5, 668 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Penkala, I. J. et al. Age-dependent alveolar epithelial plasticity orchestrates lung homeostasis and regeneration. Cell Stem Cell 28, 1775–1789.e5 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yao, C. et al. Senescence of alveolar type 2 cells drives progressive pulmonary fibrosis. Am. J. Respir. Crit. Care Med 203, 707–717 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Z. et al. Enhanced glycolysis-mediated energy production in alveolar stem cells is required for alveolar regeneration. Cell Stem Cell 30, 1028–1042.e7 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Coppé, J.-P., Desprez, P.-Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. Mech. Dis. 5, 99–118 (2010).

    Google Scholar 

  • Lundien, M. C. et al. Induction of MCP-1 expression in airway epithelial cells: role of CCR2 receptor in airway epithelial injury. J. Clin. Immunol. 22, 144–152 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y., Wang, L., Ma, S., Cheng, L. & Yu, G. Repair and regeneration of the alveolar epithelium in lung injury. FASEB J. 38, e23612 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, F. et al. Regulation of epithelial transitional states in murine and human pulmonary fibrosis. J. Clin. Invest. 133, e165612 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang, J. et al. Reciprocal interactions between alveolar progenitor dysfunction and aging promote lung fibrosis. eLife 12, 85415 (2023).

    Google Scholar 

  • Loebel, C., Mauck, R. L. & Burdick, J. A. Local nascent protein deposition and remodelling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nat. Mater. 18, 883–891 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Loebel, C. et al. Metabolic labeling of secreted matrix to investigate cell–material interactions in tissue engineering and mechanobiology. Nat. Protoc. 17, 618–648 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blache, U., Stevens, M. M. & Gentleman, E. Harnessing the secreted extracellular matrix to engineer tissues. Nat. Biomed. Eng. 4, 357–363 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hamill, K. J., Kligys, K., Hopkinson, S. B. & Jones, J. C. R. Laminin deposition in the extracellular matrix: a complex picture emerges. J. Cell Sci. 122, 4409 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schuger, L. Laminins in lung development. Exp. Lung Res. 23, 119–129 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, C. M. et al. Laminin α1 is a genetic modifier of TGF-β1–stimulated pulmonary fibrosis. JCI Insight 3, e99574 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lappi-Blanco, E. et al. Laminin-5 γ2 chain in cryptogenic organizing pneumonia and idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 169, 27–33 (2012).

    Google Scholar 

  • Morales-Nebreda, L. I. et al. Lung-specific loss of a3 laminin worsens bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 52, 503–512 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blokland, K. E. C., Pouwels, S. D., Schuliga, M., Knight, D. A. & Burgess, J. K. Regulation of cellular senescence by extracellular matrix during chronic fibrotic diseases. Clin. Sci. 134, 2681 (2020).

    CAS 

    Google Scholar 

  • Upagupta, C., Shimbori, C., Alsilmi, R. & Kolb, M. Matrix abnormalities in pulmonary fibrosis. Eur. Resp. Rev. 27, 180033 (2018).

    Google Scholar 

  • Doherty, D. F., Roets, L. & Krasnodembskaya, A. D. The role of lung resident mesenchymal stromal cells in the pathogenesis and repair of chronic lung disease. Stem Cells 41, 431–443 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alvarez-Castelao, B. et al. Cell-type-specific metabolic labeling of nascent proteomes in vivo. Nat. Biotechnol. 35, 1196–1201 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Plosa, E. J. et al. β1 integrin regulates adult lung alveolar epithelial cell inflammation. JCI Insight 5, e129259 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, M. L. et al. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol. 5, e268 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Humphries, J. D., Byron, A. & Humphries, M. J. Integrin ligands at a glance. J. Cell Sci. 119, 3901–3903 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Takahashi, S. et al. The RGD motif in fibronectin is essential for development but dispensable for fibril assembly. J. Cell Biol. 178, 167 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hao, N. et al. Laminin-integrin a6b4 interaction activates notch signaling to facilitate bladder cancer development. BMC Cancer 22, 558 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sucre, J. M. S. et al. Alveolar repair following LPS-induced injury requires cell-ECM interactions. JCI Insight 8, e167211 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Young, M. W. et al. Synthetic photoresponsive hydrogels enable in situ control over murine intestinal monolayer differentiation and crypt formation. Adv. Funct. Mater. 35, 2413778 (2024).

    PubMed 

    Google Scholar 

  • Nelson, B. R. et al. Photoinduced dithiolane crosslinking for multiresponsive dynamic hydrogels. Adv. Mater. 36, 2211209 (2023).

    Google Scholar 

  • Wu, H. et al. Progressive pulmonary fibrosis is caused by elevated mechanical tension on alveolar stem. Cell 180, 107–121.e17 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Bian, F. et al. Lung endothelial cells regulate pulmonary fibrosis through FOXF1/R-Ras signaling. Nat. Commun. 14, 2560 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, W. et al. Endothelial cell-derived MMP19 promotes pulmonary fibrosis by inducing E(nd)MT and monocyte infiltration. Cell Commun. Signal. 21, 56 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simões, F. C. et al. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nat. Commun. 11, 600 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bailey, K. E. et al. Embedding of precision-cut lung slices in engineered hydrogel biomaterials supports extended ex vivo culture. Am. J. Respir. Cell Mol. Biol. 62, 14–22 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vlodavsky, I., Bar-Shavit, R., Ishar-Michael, R., Bashkin, P. & Fuks, Z. Extracellular sequestration and release of fibroblast growth factor: a regulatory mechanism? Trends Biochem. Sci. 16, 268–271 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • Banks, J. M., Mozdzen, L. C., Harley, B. A. C. & Bailey, R. C. The combined effects of matrix stiffness and growth factor immobilization on the bioactivity and differentiation capabilities of adipose-derived stem cells. Biomaterials 35, 8951–8959 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang, H. et al. Substrate stiffness combined with hepatocyte growth factor modulates endothelial cell behavior. Biomacromolecules 17, 2767–2776 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, B. et al. AFM-nanomechanical test: an interdisciplinary tool that links the understanding of cartilage and meniscus biomechanics, osteoarthritis degeneration, and tissue engineering. ACS Biomater. Sci. Eng. 3, 2033–2049 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kawamoto, T. & Kawamoto, K. Preparation of thin frozen sections from nonfixed and undecalcified hard tissues using Kawamoto’s film method (2020). Methods Mol. Biol. 2230, 259–281 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Kwok, B. et al. Rapid specialization and stiffening of the primitive matrix in developing articular cartilage and meniscus. Acta Biomater. 168, 235–251 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Al-Mayah, A., Moseley, J., Velec, M. & Brock, K. K. Sliding characteristic and material compressibility of human lung: parametric study and verification. Med. Phys. 36, 4625–4633 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chapman, H. A. et al. Integrin α6β4 identifies an adult distal lung epithelial population with regenerative potential in mice. J. Clin. Invest. 121, 2855–2862 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Achreja, A. et al. Metabolic collateral lethal target identification reveals MTHFD2 paralogue dependency in ovarian cancer. Nat. Metab. 4, 1119–1137 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Zhu, Z. et al. Tumour-reprogrammed stromal BCAT1 fuels branched-chain ketoacid dependency in stromal-rich PDAC tumours. Nat. Metab. 2, 775–792 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cyber. SMC-9, 62–66 (1979).

    Google Scholar 

  • Hu, Y., Becker, M. L. & Willits, R. K. Quantification of cell migration: metrics selection to model application. Front. Cell Dev. Biol. 11, 1155882 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vaidžiulytė, K. et al. Persistent cell migration emerges from a coupling between protrusion dynamics and polarized trafficking. eLife 11, e69229 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *