• September 5, 2025
  • Live Match Score
  • 0


  • Heikenfeld, J. et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37, 407–419 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wang, B. et al. Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Sci. Adv. 8, eabk0967 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Heitzer, E., Haque, I. S., Roberts, C. E. S. & Speicher, M. R. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat. Rev. Genet. 20, 71–88 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Loeb, S. et al. Systematic review of complications of prostate biopsy. Eur. Urol. 64, 876–892 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Li, W. et al. Liquid biopsy in lung cancer: significance in diagnostics, prediction, and treatment monitoring. Mol. Cancer 21, 25 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tapper Elliot, B. & Lok Anna, S. F. Use of liver imaging and biopsy in clinical practice. N. Engl. J. Med. 377, 756–768 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Huang, S. et al. Advances in multifunctional electronic catheters for precise and intelligent diagnosis and therapy in minimally invasive surgery. ACS Nano 18, 18129–18150 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lee, S. Y. et al. Needle-compatible miniaturized optoelectronic sensor for pancreatic cancer detection. Sci. Adv. 6, eabc1746 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, D.-H. et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat. Mater. 10, 316–323 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Huang, S. et al. Petromyzontidae-biomimetic multimodal microneedles-integrated bioelectronic catheters for theranostic endoscopic surgery. Adv. Funct. Mater. 33, 2214485 (2023).

    Article 
    CAS 

    Google Scholar 

  • Kim, Y., Parada, G. A., Liu, S. & Zhao, X. Ferromagnetic soft continuum robots. Sci. Robot. 4, eaax7329 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Cianchetti, M., Laschi, C., Menciassi, A. & Dario, P. Biomedical applications of soft robotics. Nat. Rev. Mater. 3, 143–153 (2018).

    Article 

    Google Scholar 

  • Runciman, M., Darzi, A. & Mylonas, G. P. Soft robotics in minimally invasive surgery. Soft Robot. 6, 423–443 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, G. Z. et al. The grand challenges of Science Robotics. Sci. Robot. 3, eaar7650 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Hu, W., Lum, G. Z., Mastrangeli, M. & Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81–85 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kim, Y., Yuk, H., Zhao, R., Chester, S. A. & Zhao, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558, 274–279 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hwang, J. et al. An electromagnetically controllable microrobotic interventional system for targeted, real-time cardiovascular intervention. Adv. Healthc. Mater. 11, 2102529 (2022).

    Article 
    CAS 

    Google Scholar 

  • Kim, Y. et al. Telerobotic neurovascular interventions with magnetic manipulation. Sci. Robot. 7, eabg9907 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ze, Q. et al. Magnetic shape memory polymers with integrated multifunctional shape manipulation. Adv. Mater. 32, 1906657 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wang, L., Kim, Y., Guo, C. F. & Zhao, X. Hard-magnetic elastica. J. Mech. Phys. Solids 142, 104045 (2020).

    Article 

    Google Scholar 

  • Zhao, R., Kim, Y., Chester, S. A., Sharma, P. & Zhao, X. Mechanics of hard-magnetic soft materials. J. Mech. Phys. Solids 124, 244–263 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Y. et al. Submillimeter multifunctional ferromagnetic fiber robots for navigation, sensing, and modulation. Adv. Healthc. Mater. 12, 2300964 (2023).

    Article 
    CAS 

    Google Scholar 

  • Ma, J. et al. Shaping a soft future: patterning liquid metals. Adv. Mater. 35, 2205196 (2023).

    Article 
    CAS 

    Google Scholar 

  • Yang, Z. et al. From liquid metal to stretchable electronics: overcoming the surface tension. Sci. China Mater. 65, 2072–2088 (2022).

    Article 

    Google Scholar 

  • Zhao, Z., Soni, S., Lee, T., Nijhuis, C. A. & Xiang, D. Smart eutectic gallium–indium: from properties to applications. Adv. Mater. 35, 2203391 (2023).

    Article 
    CAS 

    Google Scholar 

  • Zhang, J., Soon, R. H., Wei, Z., Hu, W. & Sitti, M. Liquid metal-elastomer composites with dual-energy transmission mode for multifunctional miniature untethered magnetic robots. Adv. Sci. 9, 2203730 (2022).

    Article 
    CAS 

    Google Scholar 

  • Lee, S., Lee, Y. J., Kim, J. H. & Lee, G.-J. Electrochemical detection of H2O2 released from prostate cancer cells using Pt nanoparticle-decorated rGO-CNT nanocomposite-modified screen-printed carbon electrodes. Chemosensors 8, 63 (2020).

    Article 
    CAS 

    Google Scholar 

  • Meskher, H. et al. A review on CNTs-based electrochemical sensors and biosensors: unique properties and potential applications. Crit. Rev. Anal. Chem. 54, 2398–2421 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wang, L. et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Biomed. Eng. 4, 159–171 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Serra-Maia, R. et al. Mechanism and kinetics of hydrogen peroxide decomposition on platinum nanocatalysts. ACS Appl. Mater. Interfaces 10, 21224–21234 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Tao, Z., Si, H., Zhang, X., Liao, J. & Lin, S. Highly sensitive and selective H2O2 sensors based on ZnO TFT using PBNCs/Pt-NPs/TNTAs as gate electrode. Sens. Actuators B 349, 130791 (2021).

    Article 
    CAS 

    Google Scholar 

  • Berberich, J. A., Yang, L. W., Bahar, I. & Russell, A. J. A stable three enzyme creatinine biosensor. 2. Analysis of the impact of silver ions on creatine amidinohydrolase. Acta Biomater. 1, 183–191 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Hsiue, G.-H., Lu, P.-L. & Chen, J.-C. Multienzyme-immobilized modified polypropylene membrane for an amperometric creatinine biosensor. J. Appl. Polym. Sci. 92, 3126–3134 (2004).

    Article 
    CAS 

    Google Scholar 

  • Liu, Y. et al. Uric acid and creatinine biosensors with enhanced room-temperature storage stability by a multilayer enzyme matrix. Anal. Chim. Acta 1227, 340264 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Huang, S. et al. Semi-implantable device based on multiplexed microfilament electrode cluster for continuous monitoring of physiological ions. Bio-Des. Manuf. 7, 88–103 (2024).

    Article 
    CAS 

    Google Scholar 

  • Huang, X. et al. 3D-assembled microneedle ion sensor-based wearable system for the transdermal monitoring of physiological ion fluctuations. Microsyst. Nanoeng. 9, 25 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Gong, X. et al. Polymer hydrogel-based multifunctional theranostics for managing diabetic wounds. Adv. Funct. Mater. 34, 2315564 (2024).

    Article 
    CAS 

    Google Scholar 

  • Bandodkar, A. J. et al. Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst 138, 123–128 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Mandal, R., Panda, S. K. & Nayak, S. Rheology of concrete: critical review, recent advancements, and future prospectives. Constr. Build. Mater. 392, 132007 (2023).

    Article 
    CAS 

    Google Scholar 

  • Cánovas, R., Cuartero, M. & Crespo, G. A. Modern creatinine (bio)sensing: challenges of point-of-care platforms. Biosens. Bioelectron. 130, 110–124 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Kumar, P., Jaiwal, R. & Pundir, C. S. An improved amperometric creatinine biosensor based on nanoparticles of creatininase, creatinase and sarcosine oxidase. Anal. Biochem. 537, 41–49 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kassal, P. et al. Smart bandage with wireless connectivity for uric acid biosensing as an indicator of wound status. Electrochem. Commun. 56, 6–10 (2015).

    Article 
    CAS 

    Google Scholar 

  • Liu, Z. et al. Integrated multiplex sensing bandage for in situ monitoring of early infected wounds. ACS Sens. 6, 3112–3124 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Mehmood, N., Hariz, A., Fitridge, R. & Voelcker, N. H. Applications of modern sensors and wireless technology in effective wound management. J. Biomed. Mater. Res. Part B 102B, 885–895 (2014).

    Article 
    CAS 

    Google Scholar 

  • Cutting, K. F. Wound exudate: composition and functions. Br. J. Community Nurs. 8, S4–S9 (2003).

    Article 

    Google Scholar 

  • Kellum, J. A. et al. Acute kidney injury. Nat. Rev. Dis. Prim. 7, 52 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Turgut, F., Awad, A. S. & Abdel-Rahman, E. M. Acute kidney injury: medical causes and pathogenesis. J. Clin. Med. 12, 375 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kao, C.-C., Yang, W.-S., Fang, J.-T., Liu, K. D. & Wu, V.-C. Remote organ failure in acute kidney injury. J. Formos. Med. Assoc. 118, 859–866 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Hilton, R. Defining acute renal failure. Can. Med. Assoc. J. 183, 1167–1169 (2011).

    Article 

    Google Scholar 

  • Giordano, C., Karasik, O., King-Morris, K. & Asmar, A. Uric acid as a marker of kidney disease: review of the current literature. Dis. Markers 2015, 382918 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hilton, R. Acute renal failure. Br. Med. J. 333, 786 (2006).

    Article 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *