
Armand, M. & Tarascon, J. Building better batteries. Nature 451, 652–657 (2008).
Google Scholar
He, J. et al. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597, 57–63 (2021).
Google Scholar
Nanda, S., Gupta, A. & Manthiram, A. Anode‐free full cells: a pathway to high‐energy density lithium‐metal batteries. Adv. Energy Mater. 11, 2000804 (2021).
Google Scholar
Hobold, G. et al. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 6, 951–960 (2021).
Google Scholar
Dong, L. et al. Toward practical anode-free lithium pouch batteries. Energy Environ. Sci. 16, 5605–5632 (2023).
Google Scholar
Xia, Y. et al. Designing an asymmetric ether-like lithium salt to enable fast-cycling high-energy lithium metal batteries. Nat. Energy 8, 934–945 (2023).
Google Scholar
Wang, Y. et al. Anode-free lithium metal batteries based on an ultrathin and respirable interphase layer. Angew. Chem. Int. Ed. 62, e202304978 (2023).
Google Scholar
Assegie, A., Cheng, J., Kuo, L., Su, W. & Hwang, B. Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale 10, 6125–6138 (2018).
Google Scholar
Hu, A. et al. N, F-enriched inorganic/organic composite interphases to stabilize lithium metal anodes for long-life anode-free cells. J. Colloid Interface Sci. 648, 448–456 (2023).
Google Scholar
Liu, H. et al. A scalable 3D lithium metal anode. Energy Storage Mater. 16, 505–511 (2019).
Google Scholar
Lu, R. et al. PVDF-HFP layer with high porosity and polarity for high-performance lithium metal anodes in both ether and carbonate electrolytes. Nano Energy 95, 107009 (2022).
Google Scholar
Tamwattana, O. et al. High-dielectric polymer coating for uniform lithium deposition in anode-free lithium batteries. ACS Energy Lett. 6, 4416–4425 (2021).
Google Scholar
Pyo, S. et al. Lithiophilic wetting agent inducing interfacial fluorination for long‐lifespan anode‐free lithium metal batteries. Adv. Energy Mater. 13, 2203573 (2023).
Google Scholar
Sun, Z. et al. Ultra-thin and ultra-light self-lubricating layer with accelerated dynamics for anode-free lithium metal batteries. Energy Storage Mater. 58, 110–122 (2023).
Google Scholar
Ouyang, Z. et al. Programmable DNA interphase layers for high-performance anode-free lithium metal batteries. Adv. Mater. 36, 2401114 (2024).
Google Scholar
Diaz-Lopez, M. et al. Li2O:Li–Mn–O disordered rock-salt nanocomposites as cathode prelithiation additives for high-energy density Li-ion batteries. Adv. Energy Mater. 10, 1902788 (2020).
Google Scholar
Zhu, Y. et al. Lattice engineering on Li2CO3-based sacrificial cathode prelithiation agent for improving the energy density of Li-ion battery full-cell. Adv. Mater. 20, 2312159 (2023).
Genovese, M. et al. Hot formation for improved low temperature cycling of anode-free lithium metal batteries. J. Electrochem. Soc. 166, A3342 (2019).
Google Scholar
Liu, P. et al. Ultra-long-life and ultrathin quasi-solid electrolytes fabricated by solvent-free technology for safe lithium metal batteries. Energy Storage Mater. 58, 132–141 (2023).
Google Scholar
Ren, Y. & Xu, Y. Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications. Chem. Soc. Rev. 53, 1823–1869 (2024).
Google Scholar
Zeng, Y. et al. Irreversible synthesis of an ultrastrong two-dimensional polymeric material. Nature 602, 91–95 (2022).
Google Scholar
Guan, P. et al. High-temperature low-humidity proton exchange membrane with ‘stream-reservoir’ ionic channels for high-power-density fuel cells. Sci. Adv. 9, eadh1386 (2023).
Google Scholar
Li, S. et al. A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. Nat. Nanotechnol. 17, 613–621 (2022).
Google Scholar
Wang, X. et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy 3, 227–235 (2018).
Google Scholar
Kim, S. et al. Horizontal lithium electrodeposition on atomically polarized monolayer hexagonal boron nitride. ACS Nano 18, 24128–24138 (2024).
Google Scholar
Valadbeigi, Y. & Gal, F. Directionality of cation/molecule bonding in Lewis bases containing the carbonyl group. J. Phys. Chem. A 121, 6810–6822 (2017).
Google Scholar
Lu, T. & Chen, F. Bond order analysis based on the Laplacian of electron density in fuzzy overlap space. J. Phys. Chem. A 117, 3100–3108 (2013).
Google Scholar
Pei, A. et al. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17, 1132–1139 (2017).
Google Scholar
Ham, Y. et al. 3D periodic polyimide nano-networks for ultrahigh-rate and sustainable energy storage. Energy Environ. Sci. 14, 5894–5902 (2021).
Google Scholar
Yang, Z. et al. Intermolecular hydrogen bonding networks stabilized organic supramolecular cathode for ultra‐high capacity and ultra‐long cycle life rechargeable aluminum batteries. Angew. Chem. Int. Ed. 63, e202403424 (2024).
Google Scholar
Li, S. et al. Design and synthesis of a π‐conjugated N‐heteroaromatic material for aqueous zinc–organic batteries with ultrahigh rate and extremely long life. Adv. Mater. 35, 2207115 (2022).
Google Scholar
Wang, C. et al. A pyrazine‐pyridinamine covalent organic framework as a low potential anode for highly durable aqueous calcium‐ion batteries. Adv. Energy Mater. 14, 2302495 (2024).
Google Scholar
Chen, W. et al. Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nat. Commun. 10, 4973 (2019).
Google Scholar
Wu, T. et al. Helmholtz plane reconfiguration enables robust zinc metal anode in aqueous zinc‐ion batteries. Adv. Funct. Mater. 34, 2315716 (2024).
Google Scholar
Ge, W. et al. Dynamically formed surfactant assembly at the electrified electrode–electrolyte interface boosting CO2 electroreduction. J. Am. Chem. Soc. 144, 6613–6622 (2022).
Google Scholar
Zheng, J. et al. Leveraging polymer architecture design with acylamino functionalization for electrolytes to enable highly durable lithium metal batteries. Energy Environ. Sci. 17, 6739–6754 (2024).
Google Scholar
Tan, J., Matz, J., Dong, P., Shen, J. & Ye, M. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11, 2100046 (2021).
Google Scholar
Xu, Y. et al. Ion-transport-rectifying layer enables Li-metal batteries with high energy density. Matter 3, 1685–1700 (2020).
Google Scholar
Wu, Z. et al. Growing single-crystalline seeds on lithiophobic substrates to enable fast-charging lithium-metal batteries. Nat. Energy 8, 340–350 (2023).
Google Scholar
Li, N. et al. Reduced-graphene-oxide-guided directional growth of planar lithium layers. Adv. Mater. 32, 1907079 (2020).
Google Scholar
Fang, C. et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy 6, 987–994 (2021).
Google Scholar
Luo, J., Fang, C. & Wu, L. High polarity poly(vinylidene difluoride) thin coating for dendrite‐free and high‐performance lithium metal anodes. Adv. Energy Mater. 8, 1701482 (2018).
Google Scholar
Chen, W. et al. Laser-induced silicon oxide for anode-free lithium metal batteries. Adv. Mater. 32, 2002850 (2020).
Google Scholar
Qin, J. et al. Sulfur vacancies and 1T phase-rich MoS2 nanosheets as an artificial solid electrolyte interphase for 400 Wh kg−1 lithium metal batteries. Adv. Mater. 36, 2312773 (2024).
Google Scholar
Ye, L. et al. Lithium‐metal anodes working at 60 mA cm−2 and 60 mAh cm−2 through nanoscale lithium‐ion adsorbing. Angew. Chem. Int. Ed. 133, 17559–17565 (2021).
Google Scholar
Yu, Z., Cui, Y. & Bao, Z. Design principles of artificial solid electrolyte interphases for lithium-metal anodes. Cell Rep. Phys. Sci. 1, 100119 (2020).
Google Scholar
Jung, J. et al. Insights on the work function of the current collector surface in anode-free lithium metal batteries. J. Mater. Chem. A 10, 20984–20992 (2022).
Google Scholar
Gao, Y. et al. Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat. Energy 5, 534–542 (2020).
Google Scholar
Hong, L. et al. Highly reversible zinc anode enabled by a cation-exchange coating with Zn-ion selective channels. ACS Nano 16, 6906–6915 (2022).
Google Scholar
Xiao, J. et al. Understanding and applying Coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020).
Google Scholar
Louli, A. et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020).
Google Scholar
Zhang, F. et al. Catalytic role of in-situ formed C-N species for enhanced Li2CO3 decomposition. Nat. Commun. 15, 3393 (2024).
Google Scholar
Wu, X., Xiong, X., Yuan, B. & Hu, R. Understanding the phenomenon of capacity increasing along cycles: in the case of an ultralong-life and high-rate SnSe-Mo-C anode for lithium storage. J. Energy Chem. 72, 133–142 (2022).
Google Scholar
Wu, N. et al. Suppressing interfacial side reactions of anode‐free lithium batteries by an organic salt monolayer. Small 19, 2303952 (2023).
Google Scholar
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 15 (2010).
Google Scholar
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).
Google Scholar
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).
Google Scholar
Xantheas, S. On the importance of the fragment relaxation energy terms in the estimation of the basis set superposition error correction to the intermolecular interaction energy. J. Chem. Phys. 104, 8821–8824 (1996).
Google Scholar
Yurash, B. et al. Towards understanding the doping mechanism of organic semiconductors by Lewis acids. Nat. Mater. 18, 1327–1334 (2019).
Google Scholar