• September 9, 2025
  • Live Match Score
  • 0


  • Armand, M. & Tarascon, J. Building better batteries. Nature 451, 652–657 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • He, J. et al. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597, 57–63 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Nanda, S., Gupta, A. & Manthiram, A. Anode‐free full cells: a pathway to high‐energy density lithium‐metal batteries. Adv. Energy Mater. 11, 2000804 (2021).

    Article 
    CAS 

    Google Scholar 

  • Hobold, G. et al. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 6, 951–960 (2021).

    Article 
    CAS 

    Google Scholar 

  • Dong, L. et al. Toward practical anode-free lithium pouch batteries. Energy Environ. Sci. 16, 5605–5632 (2023).

    Article 
    CAS 

    Google Scholar 

  • Xia, Y. et al. Designing an asymmetric ether-like lithium salt to enable fast-cycling high-energy lithium metal batteries. Nat. Energy 8, 934–945 (2023).

    Article 
    CAS 

    Google Scholar 

  • Wang, Y. et al. Anode-free lithium metal batteries based on an ultrathin and respirable interphase layer. Angew. Chem. Int. Ed. 62, e202304978 (2023).

    Article 
    CAS 

    Google Scholar 

  • Assegie, A., Cheng, J., Kuo, L., Su, W. & Hwang, B. Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale 10, 6125–6138 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hu, A. et al. N, F-enriched inorganic/organic composite interphases to stabilize lithium metal anodes for long-life anode-free cells. J. Colloid Interface Sci. 648, 448–456 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Liu, H. et al. A scalable 3D lithium metal anode. Energy Storage Mater. 16, 505–511 (2019).

    Article 

    Google Scholar 

  • Lu, R. et al. PVDF-HFP layer with high porosity and polarity for high-performance lithium metal anodes in both ether and carbonate electrolytes. Nano Energy 95, 107009 (2022).

    Article 
    CAS 

    Google Scholar 

  • Tamwattana, O. et al. High-dielectric polymer coating for uniform lithium deposition in anode-free lithium batteries. ACS Energy Lett. 6, 4416–4425 (2021).

    Article 
    CAS 

    Google Scholar 

  • Pyo, S. et al. Lithiophilic wetting agent inducing interfacial fluorination for long‐lifespan anode‐free lithium metal batteries. Adv. Energy Mater. 13, 2203573 (2023).

    Article 
    CAS 

    Google Scholar 

  • Sun, Z. et al. Ultra-thin and ultra-light self-lubricating layer with accelerated dynamics for anode-free lithium metal batteries. Energy Storage Mater. 58, 110–122 (2023).

    Article 

    Google Scholar 

  • Ouyang, Z. et al. Programmable DNA interphase layers for high-performance anode-free lithium metal batteries. Adv. Mater. 36, 2401114 (2024).

    Article 
    CAS 

    Google Scholar 

  • Diaz-Lopez, M. et al. Li2O:Li–Mn–O disordered rock-salt nanocomposites as cathode prelithiation additives for high-energy density Li-ion batteries. Adv. Energy Mater. 10, 1902788 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhu, Y. et al. Lattice engineering on Li2CO3-based sacrificial cathode prelithiation agent for improving the energy density of Li-ion battery full-cell. Adv. Mater. 20, 2312159 (2023).

    Google Scholar 

  • Genovese, M. et al. Hot formation for improved low temperature cycling of anode-free lithium metal batteries. J. Electrochem. Soc. 166, A3342 (2019).

    Article 
    CAS 

    Google Scholar 

  • Liu, P. et al. Ultra-long-life and ultrathin quasi-solid electrolytes fabricated by solvent-free technology for safe lithium metal batteries. Energy Storage Mater. 58, 132–141 (2023).

    Article 

    Google Scholar 

  • Ren, Y. & Xu, Y. Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications. Chem. Soc. Rev. 53, 1823–1869 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zeng, Y. et al. Irreversible synthesis of an ultrastrong two-dimensional polymeric material. Nature 602, 91–95 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Guan, P. et al. High-temperature low-humidity proton exchange membrane with ‘stream-reservoir’ ionic channels for high-power-density fuel cells. Sci. Adv. 9, eadh1386 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Li, S. et al. A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. Nat. Nanotechnol. 17, 613–621 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wang, X. et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy 3, 227–235 (2018).

    Article 
    CAS 

    Google Scholar 

  • Kim, S. et al. Horizontal lithium electrodeposition on atomically polarized monolayer hexagonal boron nitride. ACS Nano 18, 24128–24138 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Valadbeigi, Y. & Gal, F. Directionality of cation/molecule bonding in Lewis bases containing the carbonyl group. J. Phys. Chem. A 121, 6810–6822 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lu, T. & Chen, F. Bond order analysis based on the Laplacian of electron density in fuzzy overlap space. J. Phys. Chem. A 117, 3100–3108 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Pei, A. et al. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17, 1132–1139 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ham, Y. et al. 3D periodic polyimide nano-networks for ultrahigh-rate and sustainable energy storage. Energy Environ. Sci. 14, 5894–5902 (2021).

    Article 
    CAS 

    Google Scholar 

  • Yang, Z. et al. Intermolecular hydrogen bonding networks stabilized organic supramolecular cathode for ultra‐high capacity and ultra‐long cycle life rechargeable aluminum batteries. Angew. Chem. Int. Ed. 63, e202403424 (2024).

    Article 
    CAS 

    Google Scholar 

  • Li, S. et al. Design and synthesis of a π‐conjugated N‐heteroaromatic material for aqueous zinc–organic batteries with ultrahigh rate and extremely long life. Adv. Mater. 35, 2207115 (2022).

    Article 

    Google Scholar 

  • Wang, C. et al. A pyrazine‐pyridinamine covalent organic framework as a low potential anode for highly durable aqueous calcium‐ion batteries. Adv. Energy Mater. 14, 2302495 (2024).

    Article 
    CAS 

    Google Scholar 

  • Chen, W. et al. Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nat. Commun. 10, 4973 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, T. et al. Helmholtz plane reconfiguration enables robust zinc metal anode in aqueous zinc‐ion batteries. Adv. Funct. Mater. 34, 2315716 (2024).

    Article 
    CAS 

    Google Scholar 

  • Ge, W. et al. Dynamically formed surfactant assembly at the electrified electrode–electrolyte interface boosting CO2 electroreduction. J. Am. Chem. Soc. 144, 6613–6622 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zheng, J. et al. Leveraging polymer architecture design with acylamino functionalization for electrolytes to enable highly durable lithium metal batteries. Energy Environ. Sci. 17, 6739–6754 (2024).

    Article 
    CAS 

    Google Scholar 

  • Tan, J., Matz, J., Dong, P., Shen, J. & Ye, M. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11, 2100046 (2021).

    Article 
    CAS 

    Google Scholar 

  • Xu, Y. et al. Ion-transport-rectifying layer enables Li-metal batteries with high energy density. Matter 3, 1685–1700 (2020).

    Article 

    Google Scholar 

  • Wu, Z. et al. Growing single-crystalline seeds on lithiophobic substrates to enable fast-charging lithium-metal batteries. Nat. Energy 8, 340–350 (2023).

    CAS 

    Google Scholar 

  • Li, N. et al. Reduced-graphene-oxide-guided directional growth of planar lithium layers. Adv. Mater. 32, 1907079 (2020).

    Article 
    CAS 

    Google Scholar 

  • Fang, C. et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy 6, 987–994 (2021).

    Article 
    CAS 

    Google Scholar 

  • Luo, J., Fang, C. & Wu, L. High polarity poly(vinylidene difluoride) thin coating for dendrite‐free and high‐performance lithium metal anodes. Adv. Energy Mater. 8, 1701482 (2018).

    Article 

    Google Scholar 

  • Chen, W. et al. Laser-induced silicon oxide for anode-free lithium metal batteries. Adv. Mater. 32, 2002850 (2020).

    Article 
    CAS 

    Google Scholar 

  • Qin, J. et al. Sulfur vacancies and 1T phase-rich MoS2 nanosheets as an artificial solid electrolyte interphase for 400 Wh kg−1 lithium metal batteries. Adv. Mater. 36, 2312773 (2024).

    Article 
    CAS 

    Google Scholar 

  • Ye, L. et al. Lithium‐metal anodes working at 60 mA cm−2 and 60 mAh cm−2 through nanoscale lithium‐ion adsorbing. Angew. Chem. Int. Ed. 133, 17559–17565 (2021).

    Article 

    Google Scholar 

  • Yu, Z., Cui, Y. & Bao, Z. Design principles of artificial solid electrolyte interphases for lithium-metal anodes. Cell Rep. Phys. Sci. 1, 100119 (2020).

    Article 

    Google Scholar 

  • Jung, J. et al. Insights on the work function of the current collector surface in anode-free lithium metal batteries. J. Mater. Chem. A 10, 20984–20992 (2022).

    Article 
    CAS 

    Google Scholar 

  • Gao, Y. et al. Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat. Energy 5, 534–542 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hong, L. et al. Highly reversible zinc anode enabled by a cation-exchange coating with Zn-ion selective channels. ACS Nano 16, 6906–6915 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Xiao, J. et al. Understanding and applying Coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020).

    Article 
    CAS 

    Google Scholar 

  • Louli, A. et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhang, F. et al. Catalytic role of in-situ formed C-N species for enhanced Li2CO3 decomposition. Nat. Commun. 15, 3393 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wu, X., Xiong, X., Yuan, B. & Hu, R. Understanding the phenomenon of capacity increasing along cycles: in the case of an ultralong-life and high-rate SnSe-Mo-C anode for lithium storage. J. Energy Chem. 72, 133–142 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wu, N. et al. Suppressing interfacial side reactions of anode‐free lithium batteries by an organic salt monolayer. Small 19, 2303952 (2023).

    Article 
    CAS 

    Google Scholar 

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 15 (2010).

    Article 

    Google Scholar 

  • Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Xantheas, S. On the importance of the fragment relaxation energy terms in the estimation of the basis set superposition error correction to the intermolecular interaction energy. J. Chem. Phys. 104, 8821–8824 (1996).

    Article 
    CAS 

    Google Scholar 

  • Yurash, B. et al. Towards understanding the doping mechanism of organic semiconductors by Lewis acids. Nat. Mater. 18, 1327–1334 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *