• June 19, 2025
  • Live Match Score
  • 0


  • Versaci, A. & Cardaci, A. The MAXXI Museum in Rome: an integrated survey experience for the restoration of contemporary architecture. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 42, 187–194 (2017).

    Article 

    Google Scholar 

  • Hajiesmaili, E., Larson, N. M., Lewis, J. A. & Clarke, D. R. Programmed shape-morphing into complex target shapes using architected dielectric elastomer actuators. Sci. Adv. 8, eabn9198 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ni, X., Yves, S., Krasnok, A. & Alu, A. Topological metamaterials. Chem. Rev. 123, 7585–7654 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xie, B. et al. Higher-order band topology. Nat. Rev. Phys. 3, 520–532 (2021).

    Article 

    Google Scholar 

  • Xu, Z., Tong, J., Cui, T. J., Chang, J. & Sievenpiper, D. F. Near-field chiral excitation of universal spin-momentum locking transport of edge waves in microwave metamaterials. Adv. Photonics 4, 046004 (2022).

    Article 

    Google Scholar 

  • Maxwell, J. C. On the calculation of the equilibrium and stiffness of frames. Lond. Edinb. Dublin Philos. Mag. 27, 294–299 (1864).

    Article 

    Google Scholar 

  • Mao, X. & Lubensky, T. C. Maxwell lattices and topological mechanics. Annu. Rev. Condens. Matter Phys. 9, 413–433 (2018).

    Article 

    Google Scholar 

  • Coulais, C., Kettenis, C. & van Hecke, M. A characteristic length scale causes anomalous size effects and boundary programmability in mechanical metamaterials. Nat. Phys. 14, 40–44 (2017).

    Article 

    Google Scholar 

  • Rocklin, D. Z., Zhou, S., Sun, K. & Mao, X. Transformable topological mechanical metamaterials. Nat. Commun. 8, 14201 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, W. et al. Stiff isotropic lattices beyond the Maxwell criterion. Sci. Adv. 5, eaaw1937 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Q. et al. Mechanical nanolattices printed using nanocluster-based photoresists. Science 378, 768–773 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Groß, M. F. et al. Tetramode metamaterials as phonon polarizers. Adv. Mater. 35, e2211801 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Hahn, V. et al. Two-step absorption instead of two-photon absorption in 3D nanoprinting. Nat. Photon. 15, 932–938 (2021).

    Article 
    CAS 

    Google Scholar 

  • Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116, 11220–11289 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Michelson, A. et al. Three-dimensional visualization of nanoparticle lattices and multimaterial frameworks. Science 376, 203–207 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Y. et al. Ultrastrong colloidal crystal metamaterials engineered with DNA. Sci. Adv. 9, eadj8103 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Michelson, A., Flanagan, T. J., Lee, S.-W. & Gang, O. High-strength, lightweight nano-architected silica. Cell Rep. Phys. Sci. 4, 101475 (2023).

    Article 
    CAS 

    Google Scholar 

  • Jansen, M., Tisdale, W. A. & Wood, V. Nanocrystal phononics. Nat. Mater. 22, 161–169 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yazdani, N. et al. Nanocrystal superlattices as phonon-engineered solids and acoustic metamaterials. Nat. Commun. 10, 4236 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gorishnyy, T., Ullal, C. K., Maldovan, M., Fytas, G. & Thomas, E. L. Hypersonic phononic crystals. Phys. Rev. Lett. 94, 115501 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cheng, W., Wang, J., Jonas, U., Fytas, G. & Stefanou, N. Observation and tuning of hypersonic bandgaps in colloidal crystals. Nat. Mater. 5, 830–836 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Still, T. et al. Simultaneous occurrence of structure-directed and particle-resonance-induced phononic gaps in colloidal films. Phys. Rev. Lett. 100, 194301 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Z. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yuan, Y. et al. Cu-catalyzed synthesis of CdZnSe–CdZnS alloy quantum dots with highly tunable emission. Chem. Mater. 31, 2635–2643 (2019).

    Article 
    CAS 

    Google Scholar 

  • Liu, M. et al. Colloidal quantum dot electronics. Nat. Electron. 4, 548–558 (2021).

    Article 

    Google Scholar 

  • Ma, J., Zhou, D., Sun, K., Mao, X. & Gonella, S. Edge modes and asymmetric wave transport in topological lattices: experimental characterization at finite frequencies. Phys. Rev. Lett. 121, 094301 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Arzash, S., Sharma, A. & MacKintosh, F. C. Mechanics of fiber networks under a bulk strain. Phys. Rev. E 106, L062403 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gadre, C. A. et al. Nanoscale imaging of phonon dynamics by electron microscopy. Nature 606, 292–297 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keim, P., Maret, G., Herz, U. & von Grunberg, H. H. Harmonic lattice behavior of two-dimensional colloidal crystals. Phys. Rev. Lett. 92, 215504 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mao, X., Chen, Q. & Granick, S. Entropy favours open colloidal lattices. Nat. Mater. 12, 217–222 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ou, Z., Wang, Z., Luo, B., Luijten, E. & Chen, Q. Kinetic pathways of crystallization at the nanoscale. Nat. Mater. 19, 450–455 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, G. et al. Self-similar mesocrystals form via interface-driven nucleation and assembly. Nature 590, 416–422 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yuk, J. M. et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 61–64 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Batista, C. A., Larson, R. G. & Kotov, N. A. Nonadditivity of nanoparticle interactions. Science 350, 1242477 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Kim, H. et al. Direct observation of polymer surface mobility via nanoparticle vibrations. Nat. Commun. 9, 2918 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rocklin, D. Z., Hsiao, L., Szakasits, M., Solomon, M. J. & Mao, X. Elasticity of colloidal gels: structural heterogeneity, floppy modes, and rigidity. Soft Matter 17, 6929–6934 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Santos, P. J., Gabrys, P. A., Zornberg, L. Z., Lee, M. S. & Macfarlane, R. J. Macroscopic materials assembled from nanoparticle superlattices. Nature 591, 586–591 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Elbert, K. C. et al. Anisotropic nanocrystal shape and ligand design for co-assembly. Sci. Adv. 7, eabf9402 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gantapara, A. P., de Graaf, J., van Roij, R. & Dijkstra, M. Phase diagram and structural diversity of a family of truncated cubes: degenerate close-packed structures and vacancy-rich states. Phys. Rev. Lett. 111, 015501 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Avendaño, C. & Escobedo, F. A. Phase behavior of rounded hard-squares. Soft Matter 8, 4675 (2012).

    Article 

    Google Scholar 

  • Henkes, S., Brito, C. & Dauchot, O. Extracting vibrational modes from fluctuations: a pedagogical discussion. Soft Matter 8, 6092–6109 (2012).

    Article 
    CAS 

    Google Scholar 

  • Shen, H. et al. Single particle tracking: from theory to biophysical applications. Chem. Rev. 117, 7331–7376 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lewis, D. J., Carter, D. J. D. & Macfarlane, R. J. Using DNA to control the mechanical response of nanoparticle superlattices. J. Am. Chem. Soc. 142, 19181–19188 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wei, J. et al. Direct imaging of atomistic grain boundary migration. Nat. Mater. 20, 951–955 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, Q. et al. In situ atomistic observation of disconnection-mediated grain boundary migration. Nat. Commun. 10, 156 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, M. et al. Oriented attachment induces fivefold twins by forming and decomposing high-energy grain boundaries. Science 367, 40–45 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hu, H., Ruiz, P. S. & Ni, R. Entropy stabilizes floppy crystals of mobile DNA-coated colloids. Phys. Rev. Lett. 120, 048003 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stukowski, A., Albe, K. & Farkas, D. Nanotwinned fcc metals: Strengthening versus softening mechanisms. Phys. Rev. B 82, 224103 (2010).

    Article 

    Google Scholar 

  • Jacobs, D. J., Rader, A. J., Kuhn, L. A. & Thorpe, M. F. Protein flexibility predictions using graph theory. Proteins Struct. Funct. Bioinform. 44, 150–165 (2001).

    Article 
    CAS 

    Google Scholar 

  • Charara, M., McInerney, J., Sun, K., Mao, X. & Gonella, S. Omnimodal topological polarization of bilayer networks: Analysis in the Maxwell limit and experiments on a 3D-printed prototype. Proc. Natl Acad. Sci. USA 119, e2208051119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Brien, M. N., Jones, M. R., Brown, K. A. & Mirkin, C. A. Universal noble metal nanoparticle seeds realized through iterative reductive growth and oxidative dissolution reactions. J. Am. Chem. Soc. 136, 7603–7606 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Ye, X., Zheng, C., Chen, J., Gao, Y. & Murray, C. B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 13, 765–771 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schneider, C., Rasband, W. & Eliceiri, K. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Falk, T. et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16, 67–70 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yao, L., Ou, Z., Luo, B., Xu, C. & Chen, Q. Machine learning to reveal nanoparticle dynamics from liquid-phase TEM videos. ACS Cent. Sci. 6, 1421–1430 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *