• July 23, 2025
  • Live Match Score
  • 0


  • Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    CAS 

    Google Scholar 

  • Price, H. et al. Roadmap on topological photonics. J. Phys. Photonics 4, 032501 (2022).

    CAS 

    Google Scholar 

  • Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    PubMed 

    Google Scholar 

  • Contractor, R. et al. Scalable single-mode surface-emitting laser via open-Dirac singularities. Nature 608, 692–698 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Kumar, A. et al. Topological sensor on a silicon chip. Appl. Phys. Lett. 121, 011101 (2022).

  • Blanco-Redondo, A., Bell, B., Oren, D., Eggleton, B. J. & Segev, M. Topological protection of biphoton states. Science 362, 568–571 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Mittal, S., Goldschmidt, E. A. & Hafezi, M. A topological source of quantum light. Nature 561, 502–506 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Dai, T. et al. Topologically protected quantum entanglement emitters. Nat. Photonics 16, 248–257 (2022).

    CAS 

    Google Scholar 

  • Hashemi, A., Zakeri, M. J., Jung, P. S. & Blanco-Redondo, A. Topological quantum photonics. APL Photonics 10, 010903 (2025).

    CAS 

    Google Scholar 

  • Nasari, H., Pyrialakos, G. G., Christodoulides, D. N. & Khajavikhan, M. Non-Hermitian topological photonics. Opt. Mater. Express 13, 870–885 (2023).

    CAS 

    Google Scholar 

  • Yan, Q. et al. Advances and applications on non-Hermitian topological photonics. Nanophotonics 12, 2247–2271 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in non-Hermitian physics. Phys. Rev. X 9, 041015 (2019).

    CAS 

    Google Scholar 

  • Meng, H., Ang, Y. S. and Lee, C. H. Exceptional points in non-Hermitian systems: applications and recent developments. Appl. Phys. Lett. 124, 060502 (2024).

  • Ding, K., Fang, C. & Ma, G. Non-hermitian topology and exceptional-point geometries. Nat. Rev. Phys. 4, 745–760 (2022).

    Google Scholar 

  • Rudner, M. S. & Levitov, L. S. Topological transition in a non-Hermitian quantum walk. Phys. Rev. Lett. 102, 065703 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Esaki, K., Sato, M., Hasebe, K. & Kohmoto, M. Edge states and topological phases in non-Hermitian systems. Phys. Rev. B 84, 205128 (2011).

    Google Scholar 

  • Diehl, S., Rico, E., Baranov, M. A. & Zoller, P. Topology by dissipation in atomic quantum wires. Nat. Phys. 7, 971–977 (2011).

    CAS 

    Google Scholar 

  • Schomerus, H. Topologically protected midgap states in complex photonic lattices. Opt. Lett. 38, 1912–1914 (2013).

    PubMed 

    Google Scholar 

  • Leykam, D., Bliokh, K. Y., Huang, C., Chong, Yi. Dong & Nori, F. Edge modes, degeneracies, and topological numbers in non-Hermitian systems. Phys. Rev. Lett. 118, 040401 (2017).

    PubMed 

    Google Scholar 

  • Reséndiz-Vázquez, P., Tschernig, K., Perez-Leija, A., Busch, K. & León-Montiel, Roberto de J. Topological protection in non-HermitianHaldane honeycomb lattices. Phys. Rev. Res. 2, 013387 (2020).

    Google Scholar 

  • Zeuner, J. M. et al. Observation of a topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett. 115, 040402 (2015).

    PubMed 

    Google Scholar 

  • Weimann, S. et al. Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater. 16, 433–438 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Zhao, H. et al. Non-Hermitian topological light steering. Science 365, 1163–1166 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. G. N., Jung, P. S., Parto, M., Christodoulides, D. N. & Khajavikhan, M. Gain-induced topological response via tailored long-range interactions. Nat. Phys. 17, 704–709 (2021).

  • Weidemann, S., Kremer, M., Longhi, S. & Szameit, A. Topological triple phase transition in non-Hermitian Floquet quasicrystals. Nature 601, 354–359 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dai, T. et al. Non-Hermitian topological phase transitions controlled by nonlinearity. Nat. Phys. 20, 101–108 (2024).

    CAS 

    Google Scholar 

  • Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photonics 11, 651–656 (2017).

    CAS 

    Google Scholar 

  • Zhao, H. et al. Topological hybrid silicon microlasers. Nat. Commun. 9, 981 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Takata, K. & Notomi, M. Photonic topological insulating phase induced solely by gain and loss. Phys. Rev. Lett. 121, 213902 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Zhu, B., Lang, Li-Jun, Wang, Q., Wang, Qi. Jie & Chong, Y. D. Topological transitions with an imaginary Aubry–André–Harper potential. Phys. Rev. Res. 5, 023044 (2023).

    CAS 

    Google Scholar 

  • Pereira, E. L., Li, H., Blanco-Redondo, A. & Lado, J. L. Non-Hermitian topology and criticality in photonic arrays with engineered losses. Phys. Rev. Res. 6, 023004 (2024).

  • Liu, S. et al. Gain- and loss-induced topological insulating phase in a non-Hermitian electrical circuit. Phys. Rev. Appl. 13, 014047 (2020).

    CAS 

    Google Scholar 

  • Gao, H. et al. Observation of topological edge states induced solely by non-Hermiticity in an acoustic crystal. Phys. Rev. B 101, 180303 (2020).

    CAS 

    Google Scholar 

  • Gao, H. et al. Non-Hermitian route to higher-order topology in an acoustic crystal. Nat. Commun. 12, 1888 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fan, H. et al. Hermitian and non-Hermitian topological edge states in one-dimensional perturbative elastic metamaterials. Mech. Syst. Signal Process. 169, 108774 (2022).

    Google Scholar 

  • Wetter, H., Fleischhauer, M., Linden, S. & Schmitt, J. Observation of a topological edge state stabilized by dissipation. Phys. Rev. Lett. 131, 083801 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • On, M. B. et al. Programmable integrated photonics for topological Hamiltonians. Nat. Commun. 15, 629 (2024).

  • Dai, T. et al. A programmable topological photonic chip. Nat. Mater. 23, 928–936 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Capmany, J. & Pérez-López, D. Programming topological photonics. Nat. Mater. 23, 874–875 (2024).

  • Cem, A., Sanchez-Jacome, D., Pérez-López, D. & Da Ros, F. Thermal crosstalk modeling and compensation for programmable photonic processors. In 2023 IEEE Photonics Conference, 1–2 (IEEE, 2023); https://doi.org/10.1109/IPC57732.2023.10360567

  • Aubry, S. & Andre, G. Analyticity breaking and anderson localization in incommensurate lattices. Ann. Isr. Phys. Soc. 3, 133 (1980).

    CAS 

    Google Scholar 

  • Verbin, M., Zilberberg, O., Lahini, Y., Kraus, Y. E. & Silberberg, Y. Topological pumping over a photonic Fibonacci quasicrystal. Phys. Rev. B 91, 064201 (2015).

    Google Scholar 

  • Tambasco, Jean-Luc et al. Quantum interference of topological states of light. Sci. Adv. 4, eaat3187 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuce, C. Pt symmetric Aubry–André model. Phys. Lett. A 378, 2024–2028 (2014).

    CAS 

    Google Scholar 

  • Longhi, S. Metal-insulator phase transition in a non-Hermitian Aubry–André–Harper model. Phys. Rev. B 100, 125157 (2019).

    CAS 

    Google Scholar 

  • Zeng, Q.-B., Yang, Y.-B. & Xu, Y. Topological phases in non-Hermitian Aubry–André–Harper models. Phys. Rev. B 101, 020201 (2020).

  • Pyrialakos, G. G. et al. Bimorphic Floquet topological insulators. Nat. Mater. 21, 634–639 (2022).

    CAS 
    PubMed 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *