
Yu, X., Marks, T. J. & Facchetti, A. Metal oxides for optoelectronic applications. Nat. Mater. 15, 383–396 (2016).
Google Scholar
Kim, T. et al. Progress, challenges, and opportunities in oxide semiconductor devices: a key building block for applications ranging from display backplanes to 3D integrated semiconductor chips. Adv. Mater. 35, e2204663 (2023).
Google Scholar
Hosono, H. & Kumomi, H. Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory (John Wiley & Sons, 2022).
Wang, B. et al. Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat. Commun. 11, 2405 (2020).
Google Scholar
Zheng, D. et al. Combustion synthesized zinc oxide electron‐transport layers for efficient and stable perovskite solar cells. Adv. Funct. Mater. 29, 1900265 (2019).
Biggs, J. et al. A natively flexible 32-bit Arm microprocessor. Nature 595, 532–536 (2021).
Google Scholar
Park, J. W., Kang, B. H. & Kim, H. J. A review of low‐temperature solution‐processed metal oxide thin‐film transistors for flexible electronics. Adv. Funct. Mater. 30, 1904632 (2019).
Google Scholar
Wang, B. et al. Expeditious, scalable solution growth of metal oxide films by combustion blade coating for flexible electronics. Proc. Natl Acad. Sci. USA 116, 9230–9238 (2019).
Google Scholar
Banger, K. K. et al. Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol-gel on chip’ process. Nat. Mater. 10, 45–50 (2011).
Google Scholar
Kim, M. G., Kanatzidis, M. G., Facchetti, A. & Marks, T. J. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 10, 382–388 (2011).
Google Scholar
Kim, Y. H. et al. Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature 489, 128–132 (2012).
Google Scholar
Yu, X. et al. Spray-combustion synthesis: efficient solution route to high-performance oxide transistors. Proc. Natl Acad. Sci. USA 112, 3217–3222 (2015).
Google Scholar
Datta, R. S. et al. Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique. Nat. Electron. 3, 51–58 (2020).
Google Scholar
Teng, L.-F., Liu, P.-T., Lo, Y.-J. & Lee, Y.-J. Effects of microwave annealing on electrical enhancement of amorphous oxide semiconductor thin film transistor. Appl. Phys. Lett. 101, 132901 (2012).
Google Scholar
Ji, K. H. et al. Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors. Appl. Phys. Lett. 98, 103509 (2011).
Google Scholar
Nakata, M. et al. Improvement of InGaZnO4 thin film transistors characteristics utilizing excimer laser annealing. Appl. Phys. Express 2, 021102 (2009).
Google Scholar
Chen, H., Rim, Y. S., Jiang, C. & Yang, Y. Low-impurity high-performance solution-processed metal oxide semiconductors via a facile redox reaction. Chem. Mater. 27, 4713–4718 (2015).
Google Scholar
Scheideler, W. J., Kumar, R., Zeumault, A. R. & Subramanian, V. Low‐temperature‐processed printed metal oxide transistors based on pure aqueous inks. Adv. Funct. Mater. 27, 1606062 (2017).
Google Scholar
Park, J. & Moon, J. Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. Langmuir 22, 3506–3513 (2006).
Google Scholar
Kong, M. et al. Ambient printing of native oxides for ultrathin transparent flexible circuit boards. Science 385, 731–737 (2024).
Google Scholar
Lin, L. et al. In situ nanojoining of Y-and T-shaped silver nanowires structures using femtosecond laser radiation. Nanotechnology 27, 125201 (2016).
Google Scholar
Huang, H., Sivayoganathan, M., Duley, W. & Zhou, Y. High integrity interconnection of silver submicron/nanoparticles on silicon wafer by femtosecond laser irradiation. Nanotechnology 26, 025303 (2014).
Google Scholar
Rim, Y. S., Lim, H. S. & Kim, H. J. Low-temperature metal-oxide thin-film transistors formed by directly photopatternable and combustible solution synthesis. ACS Appl. Mater. Interfaces 5, 3565–3571 (2013).
Google Scholar
Huang, W. et al. Ultraviolet light-densified oxide-organic self-assembled dielectrics: processing thin-film transistors at room temperature. ACS Appl. Mater. Interfaces 13, 3445–3453 (2021).
Google Scholar
Park, S. et al. In‐depth studies on rapid photochemical activation of various sol-gel metal oxide films for flexible transparent electronics. Adv. Funct. Mater. 25, 2807–2815 (2015).
Google Scholar
Tue, P. T., Inoue, S., Takamura, Y. & Shimoda, T. Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors. Appl. Phys. A 122, 623 (2016).
Google Scholar
Sunde, T. O. L. et al. Transparent and conducting ITO thin films by spin coating of an aqueous precursor solution. J. Mater. Chem. 22, 15740–15749 (2012).
Google Scholar
Lee, J. et al. A facile solution-phase approach to transparent and conducting ITO nanocrystal assemblies. J. Am. Chem. Soc. 134, 13410–13414 (2012).
Google Scholar
Wang, B. et al. Solution‐processed all‐oxide transparent high‐performance transistors fabricated by spray‐combustion synthesis. Adv. Electron. Mater. 2, 1500427 (2016).
Google Scholar
Song, L., Schenk, T., Defay, E. & Glinsek, S. Highly conductive low-temperature combustion-derived transparent indium tin oxide thin film. Mater. Adv. 2, 700–705 (2021).
Google Scholar
Ruan, C. et al. Lightwave irradiation-assisted low-temperature solution synthesis of indium-tin-oxide transparent conductive films. Ceram. Int. 48, 12317–12323 (2022).
Google Scholar
Wong, F., Fung, M., Tong, S., Lee, C. & Lee, S. Flexible organic light-emitting device based on magnetron sputtered indium-tin-oxide on plastic substrate. Thin Solid Films 466, 225–230 (2004).
Google Scholar
Lin, Y.-C., Li, J. & Yen, W. Low temperature ITO thin film deposition on PES substrate using pulse magnetron sputtering. Appl. Surf. Sci. 254, 3262–3268 (2008).
Google Scholar
David, C., Tinkham, B., Prunici, P. & Panckow, A. Highly conductive and transparent ITO films deposited at low temperatures by pulsed d.c. magnetron sputtering from ceramic and metallic rotary targets. Surf. Coat. Technol. 314, 113–117 (2017).
Google Scholar
Nayak, P. K., Hedhili, M. N., Cha, D. & Alshareef, H. N. High performance In2O3 thin film transistors using chemically derived aluminum oxide dielectric. Appl. Phys. Lett. 103, 033518 (2013).
Google Scholar
Branquinho, R. et al. Aqueous combustion synthesis of aluminum oxide thin films and application as gate dielectric in GZTO solution-based TFTs. ACS Appl. Mater. Interfaces 6, 19592–19599 (2014).
Google Scholar
Jo, J.-W. et al. Highly stable and imperceptible electronics utilizing photoactivated heterogeneous sol-gel metal-oxide dielectrics and semiconductors. Adv. Mater. 27, 1182–1188 (2015).
Google Scholar
Avis, C. & Jang, J. High-performance solution processed oxide TFT with aluminum oxide gate dielectric fabricated by a sol–gel method. J. Mater. Chem. 21, 10649–10652 (2011).
Google Scholar
Xu, W., Wang, H., Ye, L. & Xu, J. The role of solution-processed high-κ gate dielectrics in electrical performance of oxide thin-film transistors. J. Mater. Chem. C 2, 5389–5396 (2014).
Google Scholar
Xu, W. et al. Fully solution-processed metal oxide thin-film transistors via a low-temperature aqueous route. Ceram. Int. 43, 6130–6137 (2017).
Google Scholar
Carlos, E. et al. Printed, highly stable metal oxide thin‐film transistors with ultra‐thin high‐κ oxide dielectric. Adv. Electron. Mater. 6, 1901071 (2020).
Google Scholar
Huh, J.-E. et al. Effects of process variables on aqueous-based AlOx insulators for high-performance solution-processed oxide thin-film transistors. J. Ind. Eng. Chem. 68, 117–123 (2018).
Google Scholar
Carlos, E. et al. Laser induced ultrafast combustion synthesis of solution-based AlOx for thin film transistors. J. Mater. Chem. C 8, 6176–6184 (2020).
Google Scholar
Mu, Q. et al. A low-temperature solution-process high-k dielectric for high-performance flexible organic field-effect transistors. Front. Mater. 7, 570002 (2020).
Google Scholar
Kumar, A. et al. Low-temperature solution-processed high-capacitance AlOx dielectrics for low-voltage carbon-based transistors. Org. Electron. 110, 106636 (2022).
Google Scholar
Groner, M., Fabreguette, F., Elam, J. & George, S. Low-temperature Al2O3 atomic layer deposition. Chem. Mater. 16, 639–645 (2004).
Google Scholar
Voigt, M. & Sokolowski, M. Electrical properties of thin rf sputtered aluminum oxide films. Mater. Sci. Eng. B 109, 99–103 (2004).
Google Scholar
Liang, L. Y. et al. Substrate biasing effect on the physical properties of reactive RF-magnetron-sputtered aluminum oxide dielectric films on ITO glasses. ACS Appl. Mater. Interfaces 6, 2255–2261 (2014).
Google Scholar
Heo, J. S. et al. Water-mediated photochemical treatments for low-temperature passivation of metal-oxide thin-film transistors. ACS Appl. Mater. Interfaces 8, 10403–10412 (2016).
Google Scholar
Wang, H. et al. Low-temperature facile solution-processed gate dielectric for combustion derived oxide thin film transistors. RSC Adv. 4, 54729–54739 (2014).
Google Scholar
Bhalerao, S. R., Lupo, D. & Berger, P. R. Flexible thin film transistor (TFT) and circuits for Internet of Things (IoT) based on solution processed indium gallium zinc oxide (IGZO). In 2021 IEEE International Flexible Electronics Technology Conference (IFETC) 0023–0025 (IEEE, 2021).
Kim, K. T. et al. An ultra‐flexible solution‐processed metal‐oxide/carbon nanotube complementary circuit amplifier with highly reliable electrical and mechanical stability. Adv. Electron. Mater. 6, 1900845 (2020).
Google Scholar
Xu, W. et al. Low temperature solution-processed IGZO thin-film transistors. Appl. Surf. Sci. 455, 554–560 (2018).
Google Scholar
Jo, J.-W. et al. High-speed and low-temperature atmospheric photo-annealing of large-area solution-processed IGZO thin-film transistors by using programmable pulsed operation of xenon flash lamp. J. Korean Phys. Soc. 74, 1052–1058 (2019).
Google Scholar
Jo, J.-W., Kim, K.-T., Facchetti, A., Kim, M.-G. & Park, S. K. High-quality solution-processed metal-oxide gate dielectrics realized with a photo-activated metal-oxide nanocluster precursor. IEEE Electron Dev. Lett. 39, 1668–1671 (2018).
Google Scholar
Carlos, E. et al. Boosting electrical performance of high-κ nanomultilayer dielectrics and electronic devices by combining solution combustion synthesis and UV irradiation. ACS Appl. Mater. interfaces 9, 40428–40437 (2017).
Google Scholar
Zheng, Z. et al. All-sputtered, flexible, bottom-gate IGZO/Al2O3 bi-layer thin film transistors on PEN fabricated by a fully room temperature process. J. Mater. Chem. C 5, 7043–7050 (2017).
Google Scholar
Ning, H. et al. Room-temperature fabrication of high-performance amorphous In–Ga–Zn–O/Al2O3 thin-film transistors on ultrasmooth and clear nanopaper. ACS Appl. Mater. Interfaces 9, 27792–27800 (2017).
Google Scholar
Ning, H. et al. Facile room temperature routes to improve performance of IGZO thin-film transistors by an ultrathin Al2O3 passivation layer. IEEE Trans. Electron Dev. 65, 537–541 (2018).
Google Scholar
Gao, Z. et al. Room-temperature-processed transparent hemispherical optoelectronic array for electronic eyes. Mater. Today 69, 31–40 (2023).
Google Scholar
Johnson, P. B. et al. Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972).
Google Scholar