• June 19, 2025
  • Live Match Score
  • 0


  • Yu, X., Marks, T. J. & Facchetti, A. Metal oxides for optoelectronic applications. Nat. Mater. 15, 383–396 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, T. et al. Progress, challenges, and opportunities in oxide semiconductor devices: a key building block for applications ranging from display backplanes to 3D integrated semiconductor chips. Adv. Mater. 35, e2204663 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Hosono, H. & Kumomi, H. Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory (John Wiley & Sons, 2022).

  • Wang, B. et al. Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat. Commun. 11, 2405 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, D. et al. Combustion synthesized zinc oxide electron‐transport layers for efficient and stable perovskite solar cells. Adv. Funct. Mater. 29, 1900265 (2019).

  • Biggs, J. et al. A natively flexible 32-bit Arm microprocessor. Nature 595, 532–536 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Park, J. W., Kang, B. H. & Kim, H. J. A review of low‐temperature solution‐processed metal oxide thin‐film transistors for flexible electronics. Adv. Funct. Mater. 30, 1904632 (2019).

    Article 

    Google Scholar 

  • Wang, B. et al. Expeditious, scalable solution growth of metal oxide films by combustion blade coating for flexible electronics. Proc. Natl Acad. Sci. USA 116, 9230–9238 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Banger, K. K. et al. Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol-gel on chip’ process. Nat. Mater. 10, 45–50 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, M. G., Kanatzidis, M. G., Facchetti, A. & Marks, T. J. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 10, 382–388 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, Y. H. et al. Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature 489, 128–132 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yu, X. et al. Spray-combustion synthesis: efficient solution route to high-performance oxide transistors. Proc. Natl Acad. Sci. USA 112, 3217–3222 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Datta, R. S. et al. Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique. Nat. Electron. 3, 51–58 (2020).

    Article 
    CAS 

    Google Scholar 

  • Teng, L.-F., Liu, P.-T., Lo, Y.-J. & Lee, Y.-J. Effects of microwave annealing on electrical enhancement of amorphous oxide semiconductor thin film transistor. Appl. Phys. Lett. 101, 132901 (2012).

    Article 

    Google Scholar 

  • Ji, K. H. et al. Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors. Appl. Phys. Lett. 98, 103509 (2011).

    Article 

    Google Scholar 

  • Nakata, M. et al. Improvement of InGaZnO4 thin film transistors characteristics utilizing excimer laser annealing. Appl. Phys. Express 2, 021102 (2009).

    Article 

    Google Scholar 

  • Chen, H., Rim, Y. S., Jiang, C. & Yang, Y. Low-impurity high-performance solution-processed metal oxide semiconductors via a facile redox reaction. Chem. Mater. 27, 4713–4718 (2015).

    Article 
    CAS 

    Google Scholar 

  • Scheideler, W. J., Kumar, R., Zeumault, A. R. & Subramanian, V. Low‐temperature‐processed printed metal oxide transistors based on pure aqueous inks. Adv. Funct. Mater. 27, 1606062 (2017).

    Article 

    Google Scholar 

  • Park, J. & Moon, J. Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. Langmuir 22, 3506–3513 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kong, M. et al. Ambient printing of native oxides for ultrathin transparent flexible circuit boards. Science 385, 731–737 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, L. et al. In situ nanojoining of Y-and T-shaped silver nanowires structures using femtosecond laser radiation. Nanotechnology 27, 125201 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Huang, H., Sivayoganathan, M., Duley, W. & Zhou, Y. High integrity interconnection of silver submicron/nanoparticles on silicon wafer by femtosecond laser irradiation. Nanotechnology 26, 025303 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Rim, Y. S., Lim, H. S. & Kim, H. J. Low-temperature metal-oxide thin-film transistors formed by directly photopatternable and combustible solution synthesis. ACS Appl. Mater. Interfaces 5, 3565–3571 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, W. et al. Ultraviolet light-densified oxide-organic self-assembled dielectrics: processing thin-film transistors at room temperature. ACS Appl. Mater. Interfaces 13, 3445–3453 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Park, S. et al. In‐depth studies on rapid photochemical activation of various sol-gel metal oxide films for flexible transparent electronics. Adv. Funct. Mater. 25, 2807–2815 (2015).

    Article 
    CAS 

    Google Scholar 

  • Tue, P. T., Inoue, S., Takamura, Y. & Shimoda, T. Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors. Appl. Phys. A 122, 623 (2016).

    Article 

    Google Scholar 

  • Sunde, T. O. L. et al. Transparent and conducting ITO thin films by spin coating of an aqueous precursor solution. J. Mater. Chem. 22, 15740–15749 (2012).

    Article 
    CAS 

    Google Scholar 

  • Lee, J. et al. A facile solution-phase approach to transparent and conducting ITO nanocrystal assemblies. J. Am. Chem. Soc. 134, 13410–13414 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, B. et al. Solution‐processed all‐oxide transparent high‐performance transistors fabricated by spray‐combustion synthesis. Adv. Electron. Mater. 2, 1500427 (2016).

    Article 

    Google Scholar 

  • Song, L., Schenk, T., Defay, E. & Glinsek, S. Highly conductive low-temperature combustion-derived transparent indium tin oxide thin film. Mater. Adv. 2, 700–705 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ruan, C. et al. Lightwave irradiation-assisted low-temperature solution synthesis of indium-tin-oxide transparent conductive films. Ceram. Int. 48, 12317–12323 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wong, F., Fung, M., Tong, S., Lee, C. & Lee, S. Flexible organic light-emitting device based on magnetron sputtered indium-tin-oxide on plastic substrate. Thin Solid Films 466, 225–230 (2004).

    Article 
    CAS 

    Google Scholar 

  • Lin, Y.-C., Li, J. & Yen, W. Low temperature ITO thin film deposition on PES substrate using pulse magnetron sputtering. Appl. Surf. Sci. 254, 3262–3268 (2008).

    Article 
    CAS 

    Google Scholar 

  • David, C., Tinkham, B., Prunici, P. & Panckow, A. Highly conductive and transparent ITO films deposited at low temperatures by pulsed d.c. magnetron sputtering from ceramic and metallic rotary targets. Surf. Coat. Technol. 314, 113–117 (2017).

    Article 
    CAS 

    Google Scholar 

  • Nayak, P. K., Hedhili, M. N., Cha, D. & Alshareef, H. N. High performance In2O3 thin film transistors using chemically derived aluminum oxide dielectric. Appl. Phys. Lett. 103, 033518 (2013).

    Article 

    Google Scholar 

  • Branquinho, R. et al. Aqueous combustion synthesis of aluminum oxide thin films and application as gate dielectric in GZTO solution-based TFTs. ACS Appl. Mater. Interfaces 6, 19592–19599 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jo, J.-W. et al. Highly stable and imperceptible electronics utilizing photoactivated heterogeneous sol-gel metal-oxide dielectrics and semiconductors. Adv. Mater. 27, 1182–1188 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Avis, C. & Jang, J. High-performance solution processed oxide TFT with aluminum oxide gate dielectric fabricated by a sol–gel method. J. Mater. Chem. 21, 10649–10652 (2011).

    Article 
    CAS 

    Google Scholar 

  • Xu, W., Wang, H., Ye, L. & Xu, J. The role of solution-processed high-κ gate dielectrics in electrical performance of oxide thin-film transistors. J. Mater. Chem. C 2, 5389–5396 (2014).

    Article 
    CAS 

    Google Scholar 

  • Xu, W. et al. Fully solution-processed metal oxide thin-film transistors via a low-temperature aqueous route. Ceram. Int. 43, 6130–6137 (2017).

    Article 
    CAS 

    Google Scholar 

  • Carlos, E. et al. Printed, highly stable metal oxide thin‐film transistors with ultra‐thin high‐κ oxide dielectric. Adv. Electron. Mater. 6, 1901071 (2020).

    Article 
    CAS 

    Google Scholar 

  • Huh, J.-E. et al. Effects of process variables on aqueous-based AlOx insulators for high-performance solution-processed oxide thin-film transistors. J. Ind. Eng. Chem. 68, 117–123 (2018).

    Article 
    CAS 

    Google Scholar 

  • Carlos, E. et al. Laser induced ultrafast combustion synthesis of solution-based AlOx for thin film transistors. J. Mater. Chem. C 8, 6176–6184 (2020).

    Article 
    CAS 

    Google Scholar 

  • Mu, Q. et al. A low-temperature solution-process high-k dielectric for high-performance flexible organic field-effect transistors. Front. Mater. 7, 570002 (2020).

    Article 

    Google Scholar 

  • Kumar, A. et al. Low-temperature solution-processed high-capacitance AlOx dielectrics for low-voltage carbon-based transistors. Org. Electron. 110, 106636 (2022).

    Article 
    CAS 

    Google Scholar 

  • Groner, M., Fabreguette, F., Elam, J. & George, S. Low-temperature Al2O3 atomic layer deposition. Chem. Mater. 16, 639–645 (2004).

    Article 
    CAS 

    Google Scholar 

  • Voigt, M. & Sokolowski, M. Electrical properties of thin rf sputtered aluminum oxide films. Mater. Sci. Eng. B 109, 99–103 (2004).

    Article 

    Google Scholar 

  • Liang, L. Y. et al. Substrate biasing effect on the physical properties of reactive RF-magnetron-sputtered aluminum oxide dielectric films on ITO glasses. ACS Appl. Mater. Interfaces 6, 2255–2261 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heo, J. S. et al. Water-mediated photochemical treatments for low-temperature passivation of metal-oxide thin-film transistors. ACS Appl. Mater. Interfaces 8, 10403–10412 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, H. et al. Low-temperature facile solution-processed gate dielectric for combustion derived oxide thin film transistors. RSC Adv. 4, 54729–54739 (2014).

    Article 
    CAS 

    Google Scholar 

  • Bhalerao, S. R., Lupo, D. & Berger, P. R. Flexible thin film transistor (TFT) and circuits for Internet of Things (IoT) based on solution processed indium gallium zinc oxide (IGZO). In 2021 IEEE International Flexible Electronics Technology Conference (IFETC) 0023–0025 (IEEE, 2021).

  • Kim, K. T. et al. An ultra‐flexible solution‐processed metal‐oxide/carbon nanotube complementary circuit amplifier with highly reliable electrical and mechanical stability. Adv. Electron. Mater. 6, 1900845 (2020).

    Article 
    CAS 

    Google Scholar 

  • Xu, W. et al. Low temperature solution-processed IGZO thin-film transistors. Appl. Surf. Sci. 455, 554–560 (2018).

    Article 
    CAS 

    Google Scholar 

  • Jo, J.-W. et al. High-speed and low-temperature atmospheric photo-annealing of large-area solution-processed IGZO thin-film transistors by using programmable pulsed operation of xenon flash lamp. J. Korean Phys. Soc. 74, 1052–1058 (2019).

    Article 
    CAS 

    Google Scholar 

  • Jo, J.-W., Kim, K.-T., Facchetti, A., Kim, M.-G. & Park, S. K. High-quality solution-processed metal-oxide gate dielectrics realized with a photo-activated metal-oxide nanocluster precursor. IEEE Electron Dev. Lett. 39, 1668–1671 (2018).

    Article 
    CAS 

    Google Scholar 

  • Carlos, E. et al. Boosting electrical performance of high-κ nanomultilayer dielectrics and electronic devices by combining solution combustion synthesis and UV irradiation. ACS Appl. Mater. interfaces 9, 40428–40437 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, Z. et al. All-sputtered, flexible, bottom-gate IGZO/Al2O3 bi-layer thin film transistors on PEN fabricated by a fully room temperature process. J. Mater. Chem. C 5, 7043–7050 (2017).

    Article 
    CAS 

    Google Scholar 

  • Ning, H. et al. Room-temperature fabrication of high-performance amorphous In–Ga–Zn–O/Al2O3 thin-film transistors on ultrasmooth and clear nanopaper. ACS Appl. Mater. Interfaces 9, 27792–27800 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ning, H. et al. Facile room temperature routes to improve performance of IGZO thin-film transistors by an ultrathin Al2O3 passivation layer. IEEE Trans. Electron Dev. 65, 537–541 (2018).

    Article 
    CAS 

    Google Scholar 

  • Gao, Z. et al. Room-temperature-processed transparent hemispherical optoelectronic array for electronic eyes. Mater. Today 69, 31–40 (2023).

    Article 
    CAS 

    Google Scholar 

  • Johnson, P. B. et al. Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972).

    Article 
    CAS 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *