• June 13, 2025
  • Live Match Score
  • 0


  • Bocquet, L. Nanofluidics coming of age. Nat. Mater. 19, 254–256 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aluru, N. R. et al. Fluids and electrolytes under confinement in single-digit nanopores. Chem. Rev. 123, 2737–2831 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deshmukh, A. et al. Membrane distillation at the water-energy nexus: limits, opportunities, and challenges. Energy Environ. Sci. 11, 1177–1196 (2018).

    Article 
    CAS 

    Google Scholar 

  • Li, Z., Siddiqi, A., Anadon, L. D. & Narayanamurti, V. Towards sustainability in water-energy nexus: ocean energy for seawater desalination. Renew. Sustain. Energy Rev. 82, 3833–3847 (2018).

    Article 

    Google Scholar 

  • Esfandiar, A. et al. Size effect in ion transport through angstrom-scale slits. Science 358, 511–513 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Prakash, S., Pinti, M. & Bhushan, B. Theory, fabrication and applications of microfluidic and nanofluidic biosensors. Phil. Trans. R. Soc. A 370, 2269–2303 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Piruska, A., Gong, M., Sweedler, J. V. & Bohn, P. W. Nanofluidics in chemical analysis. Chem. Soc. Rev. 39, 1060–1072 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ries, L. et al. Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. Nat. Mater. 18, 1112–1117 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, X. et al. Nature gives the best solution for desalination: aquaporin-based hollow fiber composite membrane with superior performance. J. Membr. Sci. 494, 68–77 (2015).

    Article 
    CAS 

    Google Scholar 

  • Törnroth-Horsefield, S. et al. Structural mechanism of plant aquaporin gating. Nature 439, 688–694 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Emmerich, T. et al. Enhanced nanofluidic transport in activated carbon nanoconduits. Nat. Mater. 21, 696–702 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Robin, P. et al. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 379, 161–167 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, Y. Nanofluidics: a new arena for materials science. Adv. Mater. 30, 1702419 (2018).

    Article 

    Google Scholar 

  • Herman, A., Ager, J. W., Ardo, S. & Segev, G. Ratchet-based ion pumps for selective ion separations. PRX Energy 2, 023001 (2023).

    Article 

    Google Scholar 

  • Huang, X., Kong, X., Wen, L. & Jiang, L. Bioinspired ionic diodes: from unipolar to bipolar. Adv. Funct. Mater. 28, 1801079 (2018).

    Article 

    Google Scholar 

  • Karnik, R., Duan, C., Castelino, K., Daiguji, H. & Majumdar, A. Rectification of ionic current in a nanofluidic diode. Nano Lett. 7, 547–551 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cheng, L.-J. & Guo, L. J. Nanofluidic diodes. Chem. Soc. Rev. 39, 923–938 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Poggioli, A. R., Siria, A. & Bocquet, L. Beyond the tradeoff: dynamic selectivity in ionic transport and current rectification. J. Phys. Chem. B 123, 1171–1185 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Montes de Oca, J. M., Dhanasekaran, J., Córdoba, A., Darling, S. B. & de Pablo, J. J. Ionic transport in electrostatic Janus membranes. An explicit solvent molecular dynamic simulation. ACS Nano 16, 3768–3775 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Picallo, C. B., Gravelle, S., Joly, L., Charlaix, E. & Bocquet, L. Nanofluidic osmotic diodes: theory and molecular dynamics simulations. Phys. Rev. Lett. 111, 244501 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Ratschow, A. D., Pandey, D., Liebchen, B., Bhattacharyya, S. & Hardt, S. Resonant nanopumps: ac gate voltages in conical nanopores induce directed electrolyte flow. Phys. Rev. Lett. 129, 264501 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Laohakunakorn, N. et al. A Landau–Squire nanojet. Nano Lett. 13, 5141–5146 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, X., Ramiah Rajasekaran, P. & Martin, C. R. An alternating current electroosmotic pump based on conical nanopore membranes. ACS Nano 10, 4637–4643 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alizadeh, A., Hsu, W., Wang, M. & Daiguji, H. Electroosmotic flow: from microfluidics to nanofluidics. Electrophoresis 42, 834–868 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wen, Q. et al. Electric‐field‐induced ionic sieving at planar graphene oxide heterojunctions for miniaturized water desalination. Adv. Mater. 32, 1903954 (2020).

    Article 
    CAS 

    Google Scholar 

  • Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mi, B. Scaling up nanoporous graphene membranes. Science 364, 1033–1034 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, B., Wang, L., Wang, Z., Cooper, N. J. & Elimelech, M. Directing the research agenda on water and energy technologies with process and economic analysis. Energy Environ. Sci. 16, 714–722 (2023).

    Article 

    Google Scholar 

  • Marbach, S. & Bocquet, L. Osmosis, from molecular insights to large-scale applications. Chem. Soc. Rev. 48, 3102–3144 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Devasenathipathy, S. & Santiago, J. G. in Microscale Diagnostic Techniques (ed. Breuer, K. S.) 113–154 (Springer, 2005); https://doi.org/10.1007/3-540-26449-3_3

  • Huisman, I. Electroviscous effects, streaming potential, and zeta potential in polycarbonate track-etched membranes. J. Membr. Sci. 178, 79–92 (2000).

    Article 
    CAS 

    Google Scholar 

  • Van Der Heyden, F. H. J., Stein, D. & Dekker, C. Streaming currents in a single nanofluidic channel. Phys. Rev. Lett. 95, 116104 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Jia, F. et al. Advances in graphene oxide membranes for water treatment. Nano Res. 15, 6636–6654 (2022).

    Article 
    CAS 

    Google Scholar 

  • Yang, Q. et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 16, 1198–1202 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Béguin, F., Presser, V., Balducci, A. & Frackowiak, E. Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Suss, M. E. & Presser, V. Water desalination with energy storage electrode materials. Joule 2, 10–15 (2018).

    Article 

    Google Scholar 

  • Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Geise, G. M., Park, H. B., Sagle, A. C., Freeman, B. D. & McGrath, J. E. Water permeability and water/salt selectivity tradeoff in polymers for desalination. J. Membr. Sci. 369, 130–138 (2011).

    Article 
    CAS 

    Google Scholar 

  • Ober, P. et al. Liquid flow reversibly creates a macroscopic surface charge gradient. Nat. Commun. 12, 4102 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Werkhoven, B. L., Everts, J. C., Samin, S. & van Roij, R. Flow-induced surface charge heterogeneity in electrokinetics due to Stern-layer conductance coupled to reaction kinetics. Phys. Rev. Lett. 120, 264502 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Biesheuvel, P. M., Porada, S., Elimelech, M. & Dykstra, J. E. Tutorial review of reverse osmosis and electrodialysis. J. Membr. Sci. 647, 120221 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wang, L. et al. Water transport in reverse osmosis membranes is governed by pore flow, not a solution-diffusion mechanism. Sci. Adv. 9, eadf8488 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Biesheuvel, P. M., Rutten, S. B., Ryzhkov, I. I., Porada, S. & Elimelech, M. Theory for salt transport in charged reverse osmosis membranes: novel analytical equations for desalination performance and experimental validation. Desalination 557, 116580 (2023).

    Article 
    CAS 

    Google Scholar 

  • Abdelghani-Idrissi, S. Dataset for the manuscript entitled ‘Resonant osmotic diodes for voltage-induced water filtration across composite membranes’. Zenodo https://doi.org/10.5281/ZENODO.15277891 (2025).


  • Leave a Reply

    Your email address will not be published. Required fields are marked *