• August 19, 2025
  • Live Match Score
  • 0


  • Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996).

    CAS 

    Google Scholar 

  • Son, Y.-W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Ding, Y., Wang, Y. & Ni, J. Electronic properties of graphene nanoribbons embedded in boron nitride sheets. Appl. Phys. Lett. 95, 123105 (2009).

    Google Scholar 

  • Zeng, J. et al. Enhanced half-metallicity in orientationally misaligned graphene/hexagonal boron nitride lateral heterojunctions. Phys. Rev. B 94, 235425 (2016).

    Google Scholar 

  • Li, H. B. et al. Unveiling nanoscale THz-STM imaging techniques on graphene nanoribbons with zigzag edge topology. Opt. Express 32, 32062–32078 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Rizzo, D. J. et al. Topological band engineering of graphene nanoribbons. Nature 560, 204–208 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Groning, O. et al. Engineering of robust topological quantum phases in graphene nanoribbons. Nature 560, 209–213 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Cao, T., Zhao, F. Z. & Louie, S. G. Topological phases in graphene nanoribbons: junction states, spin centers, and quantum spin chains. Phys. Rev. Lett. 119, 076401 (2017).

    PubMed 

    Google Scholar 

  • Rizzo, D. J. et al. Inducing metallicity in graphene nanoribbons via zero-mode superlattices. Science 369, 1597–1603 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, S. et al. Giant edge state splitting at atomically precise graphene zigzag edges. Nat. Commun. 7, 11507 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blackwell, R. E. et al. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons. Nature 600, 647–652 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Brede, J. et al. Detecting the spin-polarization of edge states in graphene nanoribbons. Nat. Commun. 14, 6677 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, D. et al. Twisted bilayer zigzag-graphene nanoribbon junctions with tunable edge states. Nat. Commun. 14, 1018 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Šćepanović, S. et al. Delocalized spin states at zigzag termini of armchair graphene nanoribbon. Sci. Rep. 14, 11641 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Magda, G. Z. et al. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514, 608–611 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, X. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008).

    PubMed 

    Google Scholar 

  • Lu, X. et al. Graphene nanoribbons epitaxy on boron nitride. Appl. Phys. Lett. 108, 113103 (2016).

    Google Scholar 

  • Wang, G. et al. Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching. Appl. Phys. Lett. 109, 053101 (2016).

    Google Scholar 

  • Wu, S. et al. Magnetotransport properties of graphene nanoribbons with zigzag edges. Phys. Rev. Lett. 120, 216601 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Lyu, B. et al. Catalytic growth of ultralong graphene nanoribbons on insulating substrates. Adv. Mater. 34, 2200956 (2022).

    CAS 

    Google Scholar 

  • Lyu, B. et al. Graphene nanoribbons grown in hBN stacks for high-performance electronics. Nature 628, 758–764 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, X. et al. N-doping of graphene through electrothermal reactions with ammonia. Science 324, 768–771 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Jiang, D. E., Sumpter, B. G. & Dai, S. Unique chemical reactivity of a graphene nanoribbon’s zigzag edge. J. Chem. Phys. 126, 134701 (2007).

    PubMed 

    Google Scholar 

  • Wang, X. & Dai, H. Etching and narrowing of graphene from the edges. Nat. Chem. 2, 661–665 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Nikita, V. et al. Dirac half-semimetallicity and antiferromagnetism in graphene nanoribbon/hexagonal boron nitride heterojunctions. Nano Lett. 23, 6698–6704 (2023).

    Google Scholar 

  • Chen, C. et al. Directional etching for high aspect ratio nano-trenches on hexagonal boron nitride by catalytic metal particles. 2D Mater. 9, 025015 (2022).

    CAS 

    Google Scholar 

  • Tang, S. et al. Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride. Nat. Commun. 6, 6499 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, L. et al. Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches. Nat. Commun. 8, 14703 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, H. S. et al. Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride. Nat. Mater. 20, 202–207 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Singh, A. K. & Yakobson, B. I. Electronics and magnetism of patterned graphene nanoroads. Nano Lett. 9, 1540–1543 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, J.-H. & Grossman, J. C. Magnetic properties in graphene-graphane superlattices. Appl. Phys. Lett. 97, 133102 (2010).

    Google Scholar 

  • Huang, L. F., Zheng, X. H., Zhang, G. R., Li, L. L. & Zeng, Z. Understanding the band gap, magnetism, and kinetics of graphene nanostripes in graphene. J. Phys. Chem. C 115, 21088 (2011).

    CAS 

    Google Scholar 

  • Kim, H.-J., Oh, S., Zeng, C. & Cho, J.-H. Peierls instability and spin orderings of ultranarrow graphene nanoribbons in graphene. J. Phys. Chem. C 116, 13795 (2012).

    CAS 

    Google Scholar 

  • Kim, S.-W., Kim, H.-J., Choi, J.-H., Scheicher, R. H. & Cho, J.-H. Contrasting interedge superexchange interactions of graphene nanoribbons embedded in h-BN and graphene. Phys. Rev. B 92, 035443 (2015).

    Google Scholar 

  • Kan, E.-J., Li, Z., Yang, J. & Hou, J. G. Will zigzag graphene nanoribbon turn to half metal under electric field? Appl. Phys. Lett. 91, 243116 (2007).

    Google Scholar 

  • Pruneda, J. M. Origin of half-semimetallicity induced at interfaces of C-BN heterostructures. Phys. Rev. B 81, 161409(R) (2010).

    Google Scholar 

  • Casola, F., van der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 17088 (2018).

    CAS 

    Google Scholar 

  • Gross, I. et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Dovzhenko, Y. et al. Magnetostatic twists in room-temperature skyrmions explored by nitrogen-vacancy center spin texture reconstruction. Nat. Commun. 9, 2712 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thiel, L. et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 364, 973–976 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Taylor, J. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 4, 810–816 (2008).

    CAS 

    Google Scholar 

  • Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 7, 320–324 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, X. et al. Weak localization in graphene sandwiched by aligned h-BN flakes. Nanotechnology 31, 215712 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    CAS 

    Google Scholar 

  • Edwards, D. M. & Katsnelson, M. I. High-temperature ferromagnetism of sp electrons in narrow impurity bands. J. Phys. Condens. Matter 18, 7209–7225 (2006).

    CAS 

    Google Scholar 

  • Wang, W. L. et al. Graphene nanoflakes with large spin. Nano Lett. 8, 241–245 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Kondorsky, E. On hysteresis in ferromagnetics. J. Phys. 2, 161–181 (1940).

    Google Scholar 

  • Verzhbitskiy, I. A. et al. Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating. Nat. Electron. 3, 460–465 (2020).

    CAS 

    Google Scholar 

  • Pramanik, T. et al. Angular dependence of magnetization reversal in epitaxial chromium telluride thin films with perpendicular magnetic anisotropy. J. Magn. Magn. Mater. 437, 72–77 (2017).

    CAS 

    Google Scholar 

  • Li, J. et al. Magnetic anisotropy and high-frequency property of flexible FeCoTa films obliquely deposited on a wrinkled topography. Sci. Rep. 7, 2837 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Avsar, A. et al. Defect induced layer-modulated magnetism in ultrathin metallic PtSe2. Nat. Nanotechnol. 14, 674–678 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Groot, R. A. D., Mueller, F. M., Engen, P. G. V. & Buschow, K. H. J. New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024 (1983).

    Google Scholar 

  • Hu, X. Half-metallic antiferromagnet as a prospective material for spintronics. Adv. Mater. 24, 294–298 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Kim, G. et al. Blue emission at atomically sharp 1D heterojunctions between graphene and h-BN. Nat. Commun. 11, 5359 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murakami, S., Nagaosa, N. & Zhang, S.-C. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004).

    PubMed 

    Google Scholar 

  • Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotechnol. 9, 794–807 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, H. et al. Graphene nanoribbons for quantum electronics. Nat. Rev. Phys. 3, 791–802 (2021).

    CAS 

    Google Scholar 

  • Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Topsakal, M., Sevinçli, H. & Ciraci, S. Spin confinement in the superlattices of graphene ribbons. Appl. Phys. Lett. 92, 173118 (2008).

    Google Scholar 

  • Wimmer, M., Adagideli, İ., Berber, S., Tománek, D. & Richter, K. Spin currents in rough graphene nanoribbons: universal fluctuations and spin injection. Phys. Rev. Lett. 100, 177207 (2008).

    PubMed 

    Google Scholar 

  • Rondin, L. et al. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer. Appl. Phys. Lett. 100, 153118 (2012).

    Google Scholar 

  • Chen, L. et al. Edge control of graphene domains grown on hexagonal boron nitride. Nanoscale 9, 11475–11479 (2017).

    CAS 
    PubMed 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *