• September 4, 2025
  • Live Match Score
  • 0


  • Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics (Cambridge Univ. Press, 2000).

  • Yeh, P. & Gu, C. Optics of Liquid Crystal Displays (Wiley, 2010).

  • Wilczek, F. Quantum time crystals. Phys. Rev. Lett. 109, 160401 (2012).

    PubMed 

    Google Scholar 

  • Shapere, A. & Wilczek, F. Classical time crystals. Phys. Rev. Lett. 109, 160402 (2012).

    PubMed 

    Google Scholar 

  • Wilczek, F. Superfluidity and space-time translation symmetry breaking. Phys. Rev. Lett. 111, 250402 (2013).

    PubMed 

    Google Scholar 

  • Bruno, P. Impossibility of spontaneously rotating time crystals: a no-go theorem. Phys. Rev. Lett. 111, 070402 (2013).

    PubMed 

    Google Scholar 

  • Watanabe, H. & Oshikawa, M. Absence of quantum time crystals. Phys. Rev. Lett. 114, 251603 (2015).

    PubMed 

    Google Scholar 

  • Sacha, K. & Zakrzewski, J. Time crystals: a review. Rep. Prog. Phys. 81, 016401 (2017).

    Google Scholar 

  • Yao, N. Y. & Nayak, C. Time crystals in periodically driven systems. Phys. Today 71, 40–47 (2018).

    Google Scholar 

  • Khemani, V., Moessner, R. & Sondhi, S. L. A brief history of time crystals. Preprint at https://doi.org/10.48550/arXiv.1910.10745 (2019).

  • Sacha, K. Time Crystals (Springer International Publishing, 2020).

    Google Scholar 

  • Guo, L. Phase Space Crystals: Condensed Matter in Dynamical Systems (IOP Publishing, 2021).

  • Zaletel, M. P. et al. Colloquium: quantum and classical discrete time crystals. Rev. Mod. Phys. 95, 031001 (2023).

    CAS 

    Google Scholar 

  • Sacha, K. Modeling spontaneous breaking of time-translation symmetry. Phys. Rev. A 91, 033617 (2015).

    Google Scholar 

  • Khemani, V., Lazarides, A., Moessner, R. & Sondhi, S. L. Phase structure of driven quantum systems. Phys. Rev. Lett. 116, 250401 (2016).

    PubMed 

    Google Scholar 

  • Else, D. V., Bauer, B. & Nayak, C. Floquet time crystals. Phys. Rev. Lett. 117, 090402 (2016).

    PubMed 

    Google Scholar 

  • Yao, N. Y., Potter, A. C., Potirniche, I.-D. & Vishwanath, A. Discrete time crystals: rigidity, criticality, and realizations. Phys. Rev. Lett. 118, 030401 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Choi, S. et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 543, 221–225 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smits, J., Liao, L., Stoof, H. T. C. & van der Straten, P. Observation of a space-time crystal in a superfluid quantum gas. Phys. Rev. Lett. 121, 185301 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Liao, L., Smits, J., van der Straten, P. & Stoof, H. T. C. Dynamics of a space-time crystal in an atomic Bose-Einstein condensate. Phys. Rev. A 99, 013625 (2019).

    Google Scholar 

  • Smits, J., Stoof, H. T. C. & van der Straten, P. Spontaneous breaking of a discrete time-translation symmetry. Phys. Rev. A 104, 023318 (2021).

    CAS 

    Google Scholar 

  • Randall, J. et al. Many-body–localized discrete time crystal with a programmable spin-based quantum simulator. Science 374, 1474–1478 (2021).

    PubMed 

    Google Scholar 

  • Keßler, H. et al. Observation of a dissipative time crystal. Phys. Rev. Lett. 127, 043602 (2021).

    PubMed 

    Google Scholar 

  • Taheri, H., Matsko, A. B., Maleki, L. & Sacha, K. All-optical dissipative discrete time crystals. Nat. Commun. 13, 848 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taheri, H., Matsko, A. B., Herr, T. & Sacha, K. Dissipative discrete time crystals in a pump-modulated Kerr microcavity. Commun. Phys. 5, 159 (2022).

    Google Scholar 

  • Mi, X. et al. Time-crystalline eigenstate order on a quantum processor. Nature 601, 531–536 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Frey, P. & Rachel, S. Realization of a discrete time crystal on 57 qubits of a quantum computer. Sci. Adv. 8, eabm7652 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kongkhambut, P. et al. Observation of a continuous time crystal. Science 377, 670–673 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, T., Ou, J.-Y., MacDonald, K. F. & Zheludev, N. I. Photonic metamaterial analogue of a continuous time crystal. Nat. Phys. 19, 986–991 (2023).

    CAS 

    Google Scholar 

  • Chen, Y.-H. & Zhang, X. Realization of an inherent time crystal in a dissipative many-body system. Nat. Commun. 14, 6161 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, X. et al. Dissipative time crystal in a strongly interacting Rydberg gas. Nat. Phys. 20, 1389–1394 (2024).

    CAS 

    Google Scholar 

  • Greilich, A. et al. Robust continuous time crystal in an electron–nuclear spin system. Nat. Phys. 20, 631–636 (2024).

    CAS 

    Google Scholar 

  • Carraro-Haddad, I. et al. Solid-state continuous time crystal in a polariton condensate with a built-in mechanical clock. Science 384, 995–1000 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Yi, Y., Farrow, M. J., Korblova, E., Walba, D. M. & Furtak, T. E. High-sensitivity aminoazobenzene chemisorbed monolayers for photoalignment of liquid crystals. Langmuir 25, 997–1003 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Landau, L. D. & Lifshitz, E. M. Statistical Physics (Elsevier, 2013).

  • de Gennes, P. G. & Prost, J. The Physics of Liquid Crystals (Clarendon Press, 1993).

  • Reichhardt, C., Reichhardt, C. J. O. & Milošević, M. V. Statics and dynamics of skyrmions interacting with disorder and nanostructures. Rev. Mod. Phys. 94, 035005 (2022).

    CAS 

    Google Scholar 

  • Smalyukh, I. I. Review: knots and other new topological effects in liquid crystals and colloids. Rep. Prog. Phys. 83, 106601 (2020).

    PubMed 

    Google Scholar 

  • Zhao, H., Tai, J.-S. B., Wu, J.-S. & Smalyukh, I. I. Liquid crystal defect structures with Möbius strip topology. Nat. Phys. 19, 451–459 (2023).

    CAS 

    Google Scholar 

  • Mundoor, H., Senyuk, B. & Smalyukh, I. I. Triclinic nematic colloidal crystals from competing elastic and electrostatic interactions. Science 352, 69–73 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Xu, S. & Wu, C. Space-time crystal and space-time group. Phys. Rev. Lett. 120, 096401 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Gallego-Gómez, F., del Monte, F. & Meerholz, K. Optical gain by a simple photoisomerization process. Nat. Mater. 7, 490–497 (2008).

    PubMed 

    Google Scholar 

  • Brener, E. A. & Marchenko, V. I. Nonlinear theory of dislocations in smectic crystals: an exact solution. Phys. Rev. E 59, R4752–R4753 (1999).

    CAS 

    Google Scholar 

  • Sohn, H. R. O. & Smalyukh, I. I. Electrically powered motions of toron crystallites in chiral liquid crystals. Proc. Natl Acad. Sci. USA 117, 6437–6445 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prigogine, I. Time, structure, and fluctuations. Science 201, 777–785 (1978).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, R. et al. Spatiotemporal control of liquid crystal structure and dynamics through activity patterning. Nat. Mater. 20, 875–882 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, H., Malomed, B. A. & Smalyukh, I. I. Topological solitonic macromolecules. Nat. Commun. 14, 4581 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, Y.-H. et al. Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities. Opt. Data Process. Storage 3, 79–88 (2017).

    Google Scholar 

  • Cohen, E. et al. Geometric phase from Aharonov–Bohm to Pancharatnam–Berry and beyond. Nat. Rev. Phys. 1, 437–449 (2019).

    Google Scholar 

  • Lyubarov, M. et al. Amplified emission and lasing in photonic time crystals. Science 377, 425–428 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Chang, T. et al. Cellulose nanocrystal chiral photonic micro-flakes for multilevel anti-counterfeiting and identification. Chem. Eng. J. 446, 136630 (2022).

    CAS 

    Google Scholar 

  • Huang, W. & Mow, W. H. PiCode: 2D barcode with embedded picture and ViCode: 3D barcode with embedded video. In Proc. 19th Annual International Conference on Mobile Computing & Networking 139–142 (ACM, 2013).

  • Chang, S. et al. Electrical tuning of branched flow of light. Nat. Commun. 15, 197 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Poy, G. et al. Interaction and co-assembly of optical and topological solitons. Nat. Photon. 16, 454–461 (2022).

    CAS 

    Google Scholar 

  • Martinez, A., Mireles, H. C. & Smalyukh, I. I. Large-area optoelastic manipulation of colloidal particles in liquid crystals using photoresponsive molecular surface monolayers. Proc. Natl Acad. Sci. USA 108, 20891–20896 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, T., Trivedi, R. P. & Smalyukh, I. I. Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals. Opt. Lett. 35, 3447–3449 (2010).

    CAS 
    PubMed 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *