
Sun, H. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 621, 493–498 (2023).
Google Scholar
Zhang, Y. et al. High-temperature superconductivity with zero resistance and strange-metal behaviour in La3Ni2O7–δ. Nat. Phys. 20, 1269–1273 (2024).
Google Scholar
Wang, G. et al. Pressure-induced superconductivity in polycrystalline La3Ni2O7–δ. Phys. Rev. X 14, 011040 (2024).
Google Scholar
Zhu, Y. et al. Superconductivity in pressurized trilayer La4Ni3O10−δ single crystals. Nature 631, 531–536 (2024).
Google Scholar
Wang, N. et al. Bulk high-temperature superconductivity in pressurized tetragonal La2PrNi2O7. Nature 634, 579–584 (2024).
Google Scholar
Wang, M., Wen, H.-H., Wu, T., Yao, D.-X. & Xiang, T. Normal and superconducting properties of La3Ni2O7. Chinese Phys. Lett. 41, 077402 (2024).
Google Scholar
Locquet, J.-P. et al. Doubling the critical temperature of La1.9Sr0.1CuO4 using epitaxial strain. Nature 394, 453–456 (1998).
Google Scholar
Bozovic, I., Logvenov, G., Belca, I., Narimbetov, B. & Sveklo, I. Epitaxial strain and superconductivity in La2–xSrxCuO4 thin films. Phys. Rev. Lett. 89, 107001 (2002).
Google Scholar
Ko, E. K. et al. Signatures of ambient pressure superconductivity in thin film La3Ni2O7. Nature 638, 935–940 (2025).
Google Scholar
Zhou, G. et al. Ambient-pressure superconductivity onset above 40 K in (La,Pr)3Ni2O7 films. Nature 640, 641–646 (2025).
Puphal, P. et al. Unconventional crystal structure of the high-pressure superconductor La3Ni2O7. Phys. Rev. Lett. 133, 146002 (2024).
Google Scholar
Chen, X. et al. Polymorphism in the Ruddlesden–Popper nickelate La3Ni2O7: discovery of a hidden phase with distinctive layer stacking. J. Am. Chem. Soc. 146, 3640–3645 (2024).
Google Scholar
Wang, H., Chen, L., Rutherford, A., Zhou, H. & Xie, W. Long-range structural order in a hidden phase of Ruddlesden–Popper bilayer nickelate La3Ni2O7. Inorg. Chem. 63, 5020–5026 (2024).
Google Scholar
Zinkevich, M., Solak, N., Nitsche, H., Ahrens, M. & Aldinger, F. Stability and thermodynamic functions of lanthanum nickelates. J. Alloys Compd. 438, 92–99 (2007).
Google Scholar
Cui, T. et al. Strain-mediated phase crossover in Ruddlesden–Popper nickelates. Commun. Mater. 5, 32 (2024).
Google Scholar
Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).
Google Scholar
Smith, J. A., Cima, M. J. & Sonnenberg, N. High critical current density thick MOD-derived YBCO films. IEEE Trans. Appl. Supercond. 9, 1531–1534 (1999).
Google Scholar
Wang, L. et al. Structure responsible for the superconducting state in La3Ni2O7 at high-pressure and low-temperature conditions. J. Am. Chem. Soc. 146, 7506–7514 (2024).
Google Scholar
Li, J. et al. Identification of the superconductivity in bilayer nickelate La3Ni2O7 upon 100 GPa. Preprint at https://arxiv.org/abs/2404.11369 (2025).
Dong, Z. et al. Visualization of oxygen vacancies and self-doped ligand holes in La3Ni2O7–δ. Nature 630, 847–852 (2024).
Google Scholar
Batakliev, T., Georgiev, V., Anachkov, M., Rakovsky, S. & Rakovsky, S. Ozone decomposition. Interdiscip. Toxicol. 7, 47–59 (2014).
Google Scholar
Wiesmann, H. et al. Simple model for characterizing the electrical resistivity in A – 15 superconductors. Phys. Rev. Lett. 38, 782–785 (1977).
Google Scholar
Cooper, R. A. et al. Anomalous criticality in the electrical resistivity of La2–xSrxCuO4. Science 323, 603–607 (2009).
Google Scholar
Hussey, N. E. Phenomenology of the normal state in-plane transport properties of high-Tc cuprates. J. Phys. Condens. Matter 20, 123201 (2008).
Google Scholar
Hwang, H. Y. et al. Scaling of the temperature dependent Hall effect in La2–xSrxCuO4. Phys. Rev. Lett. 72, 2636–2639 (1994).
Google Scholar
Zhou, Y. et al. Investigations of key issues on the reproducibility of high-Tc superconductivity emerging from compressed La3Ni2O7. Matter Radiat. Extrem. 10, 027801 (2025).
Google Scholar
Gu, Y., Le, C., Yang, Z., Wu, X. & Hu, J. Effective model and pairing tendency in the bilayer Ni-based superconductor La3Ni2O7. Phys. Rev. B 111, 174506 (2025).
Zhang, Y., Lin, L.-F., Moreo, A. & Dagotto, E. Electronic structure, dimer physics, orbital-selective behavior, and magnetic tendencies in the bilayer nickelate superconductor La3Ni2O7 under pressure. Phys. Rev. B 108, L180510 (2023).
Google Scholar
Christiansson, V., Petocchi, F. & Werner, P. Correlated electronic structure of La3Ni2O7 under pressure. Phys. Rev. Lett. 131, 206501 (2023).
Google Scholar
Lechermann, F., Gondolf, J., Bötzel, S. & Eremin, I. M. Electronic correlations and superconducting instability in La3Ni2O7 under high pressure. Phys. Rev. B 108, L201121 (2023).
Google Scholar
Yang, Q.-G., Wang, D. & Wang, Q.-H. Possible s±-wave superconductivity in La3Ni2O7. Phys. Rev. B 108, L140505 (2023).
Google Scholar
Liu, Y.-B., Mei, J.-W., Ye, F., Chen, W.-Q. & Yang, F. s±-wave pairing and the destructive role of apical-oxygen deficiencies in La3Ni2O7 under pressure. Phys. Rev. Lett. 131, 236002 (2023).
Google Scholar
Yang, Y., Zhang, G.-M. & Zhang, F.-C. Interlayer valence bonds and two-component theory for high-Tc superconductivity of La3Ni2O7 under pressure. Phys. Rev. B 108, L201108 (2023).
Google Scholar
Shen, Y., Qin, M. & Zhang, G.-M. Effective bi-layer model Hamiltonian and density-matrix renormalization group study for the high-Tc superconductivity in La3Ni2O7 under high pressure. Chinese Phys. Lett. 40, 127401 (2023).
Google Scholar
Qin, Q. & Yang, Y. High-Tc superconductivity by mobilizing local spin singlets and possible route to higher Tc in pressurized La3Ni2O7. Phys. Rev. B 108, L140504 (2023).
Google Scholar
Luo, Z., Lv, B., Wang, M., Wú, W. & Yao, D.-X. High-Tc superconductivity in La3Ni2O7 based on the bilayer two-orbital t–J model. npj Quantum Mater. 9, 61 (2024).
Google Scholar
Sakakibara, H., Kitamine, N., Ochi, M. & Kuroki, K. Possible high Tc superconductivity in La3Ni2O7 under high pressure through manifestation of a nearly half-filled bilayer Hubbard model. Phys. Rev. Lett. 132, 106002 (2024).
Google Scholar
Geisler, B., Hamlin, J. J., Stewart, G. R., Hennig, R. G. & Hirschfeld, P. J. Fermi surface reconstruction in strained La3Ni2O7 on LaAlO3(001) and SrTiO3(001). Preprint at https://arxiv.org/abs/2411.14600 (2024).
Zhao, Y.-F. & Botana, A. S. Electronic structure of Ruddlesden-Popper nickelates: Strain to mimic the effects of pressure. Phys. Rev. B 111, 115154 (2025).
Google Scholar
Lu, C., Pan, Z., Yang, F. & Wu, C. Interlayer-coupling-driven high-temperature superconductivity in La3Ni2O7 under pressure. Phys. Rev. Lett. 132, 146002 (2024).
Google Scholar
Oh, H. & Zhang, Y.-H. Type-II t–J model and shared superexchange coupling from Hund’s rule in superconducting La3Ni2O7. Phys. Rev. B 108, 174511 (2023).
Google Scholar
Cao, Y. & Yang, Y. Flat bands promoted by Hund’s rule coupling in the candidate double-layer high-temperature superconductor La3Ni2O7 under high pressure. Phys. Rev. B 109, L081105 (2024).
Google Scholar
Qu, X.-Z. et al. Bilayer t–J–J⊥ model and magnetically mediated pairing in the pressurized nickelate La3Ni2O7. Phys. Rev. Lett. 132, 036502 (2024).
Google Scholar
Ouyang, Z. et al. Hund electronic correlation in La3Ni2O7 under high pressure. Phys. Rev. B 109, 115114 (2024).
Google Scholar
Wang, Z., Jiang, K. & Zhang, F.-C. Self-doped molecular Mott insulator for bilayer high-temperature superconducting La3Ni2O7. Preprint at https://arxiv.org/abs/2412.18469 (2025).
Botana, A. S., Lee, K.-W., Norman, M. R., Pardo, V. & Pickett, W. E. Low valence nickelates: launching the nickel age of superconductivity. Front. Phys. 9, 813532 (2022).
Google Scholar
Luo, Z., Hu, X., Wang, M., Wú, W. & Yao, D.-X. Bilayer two-orbital model of La3Ni2O7 under pressure. Phys. Rev. Lett. 131, 126001 (2023).
Google Scholar
Fan, Z. et al. Superconductivity in nickelate and cuprate superconductors with strong bilayer coupling. Phys. Rev. B 110, 024514 (2024).
Google Scholar
Jiang, K., Wang, Z. & Zhang, F.-C. High-temperature superconductivity in La3Ni2O7. Chinese Phys. Lett. 41, 017402 (2024).
Google Scholar
Jiang, R., Hou, J., Fan, Z., Lang, Z.-J. & Ku, W. Pressure driven fractionalization of ionic spins results in cupratelike high-Tc superconductivity in La3Ni2O7. Phys. Rev. Lett. 132, 126503 (2024).
Google Scholar
Harper, F. E. & Tinkham, M. The mixed state in superconducting thin films. Phys. Rev. 172, 441–450 (1968).
Google Scholar
Harvey, S. P. et al. Evidence for nodal superconductivity in infinite-layer nickelates. Preprint at https://arxiv.org/abs/2201.12971 (2022).
Mihaly, L., Kendziora, C., Hartge, J., Mandrus, D. & Forro, L. High-pressure cell for oxygen annealing at elevated temperatures. Rev. Sci. Instrum. 64, 2397 (1993).
Google Scholar