• May 29, 2025
  • Live Match Score
  • 0


  • Sun, H. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 621, 493–498 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. High-temperature superconductivity with zero resistance and strange-metal behaviour in La3Ni2O7–δ. Nat. Phys. 20, 1269–1273 (2024).

    Article 
    CAS 

    Google Scholar 

  • Wang, G. et al. Pressure-induced superconductivity in polycrystalline La3Ni2O7–δ. Phys. Rev. X 14, 011040 (2024).

    CAS 

    Google Scholar 

  • Zhu, Y. et al. Superconductivity in pressurized trilayer La4Ni3O10−δ single crystals. Nature 631, 531–536 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, N. et al. Bulk high-temperature superconductivity in pressurized tetragonal La2PrNi2O7. Nature 634, 579–584 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, M., Wen, H.-H., Wu, T., Yao, D.-X. & Xiang, T. Normal and superconducting properties of La3Ni2O7. Chinese Phys. Lett. 41, 077402 (2024).

    Article 
    CAS 

    Google Scholar 

  • Locquet, J.-P. et al. Doubling the critical temperature of La1.9Sr0.1CuO4 using epitaxial strain. Nature 394, 453–456 (1998).

    Article 
    CAS 

    Google Scholar 

  • Bozovic, I., Logvenov, G., Belca, I., Narimbetov, B. & Sveklo, I. Epitaxial strain and superconductivity in La2–xSrxCuO4 thin films. Phys. Rev. Lett. 89, 107001 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ko, E. K. et al. Signatures of ambient pressure superconductivity in thin film La3Ni2O7. Nature 638, 935–940 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, G. et al. Ambient-pressure superconductivity onset above 40 K in (La,Pr)3Ni2O7 films. Nature 640, 641–646 (2025).

  • Puphal, P. et al. Unconventional crystal structure of the high-pressure superconductor La3Ni2O7. Phys. Rev. Lett. 133, 146002 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, X. et al. Polymorphism in the Ruddlesden–Popper nickelate La3Ni2O7: discovery of a hidden phase with distinctive layer stacking. J. Am. Chem. Soc. 146, 3640–3645 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, H., Chen, L., Rutherford, A., Zhou, H. & Xie, W. Long-range structural order in a hidden phase of Ruddlesden–Popper bilayer nickelate La3Ni2O7. Inorg. Chem. 63, 5020–5026 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zinkevich, M., Solak, N., Nitsche, H., Ahrens, M. & Aldinger, F. Stability and thermodynamic functions of lanthanum nickelates. J. Alloys Compd. 438, 92–99 (2007).

    Article 
    CAS 

    Google Scholar 

  • Cui, T. et al. Strain-mediated phase crossover in Ruddlesden–Popper nickelates. Commun. Mater. 5, 32 (2024).

    Article 
    CAS 

    Google Scholar 

  • Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smith, J. A., Cima, M. J. & Sonnenberg, N. High critical current density thick MOD-derived YBCO films. IEEE Trans. Appl. Supercond. 9, 1531–1534 (1999).

    Article 

    Google Scholar 

  • Wang, L. et al. Structure responsible for the superconducting state in La3Ni2O7 at high-pressure and low-temperature conditions. J. Am. Chem. Soc. 146, 7506–7514 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, J. et al. Identification of the superconductivity in bilayer nickelate La3Ni2O7 upon 100 GPa. Preprint at https://arxiv.org/abs/2404.11369 (2025).

  • Dong, Z. et al. Visualization of oxygen vacancies and self-doped ligand holes in La3Ni2O7–δ. Nature 630, 847–852 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Batakliev, T., Georgiev, V., Anachkov, M., Rakovsky, S. & Rakovsky, S. Ozone decomposition. Interdiscip. Toxicol. 7, 47–59 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wiesmann, H. et al. Simple model for characterizing the electrical resistivity in A – 15 superconductors. Phys. Rev. Lett. 38, 782–785 (1977).

    Article 
    CAS 

    Google Scholar 

  • Cooper, R. A. et al. Anomalous criticality in the electrical resistivity of La2–xSrxCuO4. Science 323, 603–607 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hussey, N. E. Phenomenology of the normal state in-plane transport properties of high-Tc cuprates. J. Phys. Condens. Matter 20, 123201 (2008).

    Article 

    Google Scholar 

  • Hwang, H. Y. et al. Scaling of the temperature dependent Hall effect in La2–xSrxCuO4. Phys. Rev. Lett. 72, 2636–2639 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, Y. et al. Investigations of key issues on the reproducibility of high-Tc superconductivity emerging from compressed La3Ni2O7. Matter Radiat. Extrem. 10, 027801 (2025).

    Article 
    CAS 

    Google Scholar 

  • Gu, Y., Le, C., Yang, Z., Wu, X. & Hu, J. Effective model and pairing tendency in the bilayer Ni-based superconductor La3Ni2O7. Phys. Rev. B 111, 174506 (2025).

  • Zhang, Y., Lin, L.-F., Moreo, A. & Dagotto, E. Electronic structure, dimer physics, orbital-selective behavior, and magnetic tendencies in the bilayer nickelate superconductor La3Ni2O7 under pressure. Phys. Rev. B 108, L180510 (2023).

    Article 
    CAS 

    Google Scholar 

  • Christiansson, V., Petocchi, F. & Werner, P. Correlated electronic structure of La3Ni2O7 under pressure. Phys. Rev. Lett. 131, 206501 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lechermann, F., Gondolf, J., Bötzel, S. & Eremin, I. M. Electronic correlations and superconducting instability in La3Ni2O7 under high pressure. Phys. Rev. B 108, L201121 (2023).

    Article 
    CAS 

    Google Scholar 

  • Yang, Q.-G., Wang, D. & Wang, Q.-H. Possible s±-wave superconductivity in La3Ni2O7. Phys. Rev. B 108, L140505 (2023).

    Article 
    CAS 

    Google Scholar 

  • Liu, Y.-B., Mei, J.-W., Ye, F., Chen, W.-Q. & Yang, F. s±-wave pairing and the destructive role of apical-oxygen deficiencies in La3Ni2O7 under pressure. Phys. Rev. Lett. 131, 236002 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, Y., Zhang, G.-M. & Zhang, F.-C. Interlayer valence bonds and two-component theory for high-Tc superconductivity of La3Ni2O7 under pressure. Phys. Rev. B 108, L201108 (2023).

    Article 
    CAS 

    Google Scholar 

  • Shen, Y., Qin, M. & Zhang, G.-M. Effective bi-layer model Hamiltonian and density-matrix renormalization group study for the high-Tc superconductivity in La3Ni2O7 under high pressure. Chinese Phys. Lett. 40, 127401 (2023).

    Article 
    CAS 

    Google Scholar 

  • Qin, Q. & Yang, Y. High-Tc superconductivity by mobilizing local spin singlets and possible route to higher Tc in pressurized La3Ni2O7. Phys. Rev. B 108, L140504 (2023).

    Article 
    CAS 

    Google Scholar 

  • Luo, Z., Lv, B., Wang, M., Wú, W. & Yao, D.-X. High-Tc superconductivity in La3Ni2O7 based on the bilayer two-orbital tJ model. npj Quantum Mater. 9, 61 (2024).

    Article 
    CAS 

    Google Scholar 

  • Sakakibara, H., Kitamine, N., Ochi, M. & Kuroki, K. Possible high Tc superconductivity in La3Ni2O7 under high pressure through manifestation of a nearly half-filled bilayer Hubbard model. Phys. Rev. Lett. 132, 106002 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Geisler, B., Hamlin, J. J., Stewart, G. R., Hennig, R. G. & Hirschfeld, P. J. Fermi surface reconstruction in strained La3Ni2O7 on LaAlO3(001) and SrTiO3(001). Preprint at https://arxiv.org/abs/2411.14600 (2024).

  • Zhao, Y.-F. & Botana, A. S. Electronic structure of Ruddlesden-Popper nickelates: Strain to mimic the effects of pressure. Phys. Rev. B 111, 115154 (2025).

    Article 
    CAS 

    Google Scholar 

  • Lu, C., Pan, Z., Yang, F. & Wu, C. Interlayer-coupling-driven high-temperature superconductivity in La3Ni2O7 under pressure. Phys. Rev. Lett. 132, 146002 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oh, H. & Zhang, Y.-H. Type-II tJ model and shared superexchange coupling from Hund’s rule in superconducting La3Ni2O7. Phys. Rev. B 108, 174511 (2023).

    Article 
    CAS 

    Google Scholar 

  • Cao, Y. & Yang, Y. Flat bands promoted by Hund’s rule coupling in the candidate double-layer high-temperature superconductor La3Ni2O7 under high pressure. Phys. Rev. B 109, L081105 (2024).

    Article 
    CAS 

    Google Scholar 

  • Qu, X.-Z. et al. Bilayer tJJ model and magnetically mediated pairing in the pressurized nickelate La3Ni2O7. Phys. Rev. Lett. 132, 036502 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ouyang, Z. et al. Hund electronic correlation in La3Ni2O7 under high pressure. Phys. Rev. B 109, 115114 (2024).

    Article 
    CAS 

    Google Scholar 

  • Wang, Z., Jiang, K. & Zhang, F.-C. Self-doped molecular Mott insulator for bilayer high-temperature superconducting La3Ni2O7. Preprint at https://arxiv.org/abs/2412.18469 (2025).

  • Botana, A. S., Lee, K.-W., Norman, M. R., Pardo, V. & Pickett, W. E. Low valence nickelates: launching the nickel age of superconductivity. Front. Phys. 9, 813532 (2022).

    Article 

    Google Scholar 

  • Luo, Z., Hu, X., Wang, M., Wú, W. & Yao, D.-X. Bilayer two-orbital model of La3Ni2O7 under pressure. Phys. Rev. Lett. 131, 126001 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fan, Z. et al. Superconductivity in nickelate and cuprate superconductors with strong bilayer coupling. Phys. Rev. B 110, 024514 (2024).

    Article 
    CAS 

    Google Scholar 

  • Jiang, K., Wang, Z. & Zhang, F.-C. High-temperature superconductivity in La3Ni2O7. Chinese Phys. Lett. 41, 017402 (2024).

    Article 
    CAS 

    Google Scholar 

  • Jiang, R., Hou, J., Fan, Z., Lang, Z.-J. & Ku, W. Pressure driven fractionalization of ionic spins results in cupratelike high-Tc superconductivity in La3Ni2O7. Phys. Rev. Lett. 132, 126503 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Harper, F. E. & Tinkham, M. The mixed state in superconducting thin films. Phys. Rev. 172, 441–450 (1968).

    Article 

    Google Scholar 

  • Harvey, S. P. et al. Evidence for nodal superconductivity in infinite-layer nickelates. Preprint at https://arxiv.org/abs/2201.12971 (2022).

  • Mihaly, L., Kendziora, C., Hartge, J., Mandrus, D. & Forro, L. High-pressure cell for oxygen annealing at elevated temperatures. Rev. Sci. Instrum. 64, 2397 (1993).

    Article 
    CAS 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *