
Sun, H. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 621, 493–498 (2023).
Google Scholar
Hou, J. et al. Emergence of high-temperature superconducting phase in pressurized La3Ni2O7 crystals. Chin. Phys. Lett. 40, 117302 (2023).
Google Scholar
Zhang, Y. et al. High-temperature superconductivity with zero resistance and strange-metal behaviour in La3Ni2O7−δ. Nat. Phys. 20, 1269–1273 (2024).
Google Scholar
Wang, G. et al. Pressure-induced superconductivity in polycrystalline La3Ni2O7. Phys. Rev. X 14, 011040 (2024).
Google Scholar
Wang, N. et al. Bulk high-temperature superconductivity in pressurized tetragonal La2PrNi2O7. Nature 634, 579–584 (2024).
Google Scholar
Zhu, Y. et al. Superconductivity in pressurized trilayer La4Ni3O10−δ single crystals. Nature 631, 531–536 (2024).
Google Scholar
Wang, M., Wen, H.-H., Wu, T., Yao, D.-X. & Xiang, T. Normal and superconducting properties of La3Ni2O7. Chin. Phys. Lett. 41, 077402 (2024).
Google Scholar
Shi, M. et al. Prerequisite of superconductivity: SDW rather than tetragonal structure in double-layer La3Ni2O7–x. Preprint at https://arxiv.org/abs/2501.14202 (2025).
Li, Q. et al. Signature of superconductivity in pressurized La4Ni3O10. Chin. Phys. Lett. 41, 017401 (2024).
Google Scholar
Sakakibara, H. et al. Theoretical analysis on the possibility of superconductivity in the trilayer Ruddlesden-Popper nickelate La4Ni3O10 under pressure and its experimental examination: comparison with La3Ni2O7. Phys. Rev. B 109, 144511 (2024).
Google Scholar
Zhang, M. et al. Superconductivity in trilayer nickelate La4Ni3O10 under pressure. Phys. Rev. X 15, 021005 (2025).
Zhang, M. et al. Effects of pressure and doping on Ruddlesden-Popper phases Lan+1NinO3n+1. J. Mater. Sci. Technol. 185, 147–154 (2024).
Google Scholar
Feng, J.-J. et al. Unaltered density wave transition and pressure-induced signature of superconductivity in Nd-doped La3Ni2O7. Phys. Rev. B 110, L100507 (2024).
Google Scholar
Ko, E. K. et al. Signatures of ambient pressure superconductivity in thin film La3Ni2O7. Nature 638, 935–940 (2025).
Google Scholar
Zhou, G. et al. Ambient-pressure superconductivity onset above 40 K in (La,Pr)3Ni2O7 films. Nature 640, 641–646 (2025).
Google Scholar
Liu, Y. et al. Superconductivity and normal-state transport in compressively strained La2PrNi2O7 thin films. Nat. Mater. 24, 1221–1227 (2025).
Chen, X. et al. Polymorphism in the Ruddlesden–Popper nickelate La3Ni2O7: discovery of a hidden phase with distinctive layer stacking. J. Am. Chem. Soc. 146, 3640–3645 (2024).
Google Scholar
Puphal, P. et al. Unconventional crystal structure of the high-pressure superconductor La3Ni2O7. Phys. Rev. Lett. 133, 146002 (2024).
Google Scholar
Wang, H., Chen, L., Rutherford, A., Zhou, H. & Xie, W. Long-range structural order in a hidden phase of Ruddlesden–Popper bilayer nickelate La3Ni2O7. Inorg. Chem. 63, 5020–5026 (2024).
Google Scholar
Li, F. et al. Ambient pressure growth of bilayer nickelate single crystals with superconductivity over 90 K under high pressure. Preprint at https://arxiv.org/abs/2501.14584 (2025).
Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005).
Google Scholar
Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).
Google Scholar
Taillefer, L. Scattering and pairing in cuprate superconductors. Annu. Rev. Condens. Matter Phys. 1, 51–70 (2010).
Google Scholar
Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).
Google Scholar
Hussey, N. E. Phenomenology of the normal state in-plane transport properties of high-Tc cuprates. J. Phys. Condens. Matter 20, 123201 (2008).
Yang, J. et al. Orbital-dependent electron correlation in double-layer nickelate La3Ni2O7. Nat. Commun. 15, 4373 (2024).
Google Scholar
Lechermann, F., Gondolf, J., Bötzel, S. & Eremin, I. M. Electronic correlations and superconducting instability in La3Ni2O7 under high pressure. Phys. Rev. B 108, L201121 (2023).
Google Scholar
Liu, Y.-B., Mei, J.-W., Ye, F., Chen, W.-Q. & Yang, F. s±-wave pairing and the destructive role of apical-oxygen deficiencies in La3Ni2O7 under pressure. Phys. Rev. Lett. 131, 236002 (2023).
Google Scholar
Luo, Z., Lv, B., Wang, M., Wú, W. & Yao, D.-X. High-TC superconductivity in La3Ni2O7 based on the bilayer two-orbital t-J model. npj Quantum Mater. 9, 61 (2024).
Google Scholar
Sakakibara, H., Kitamine, N., Ochi, M. & Kuroki, K. Possible high Tc superconductivity in La3Ni2O7 under high pressure through manifestation of a nearly half-filled bilayer Hubbard model. Phys. Rev. Lett. 132, 106002 (2024).
Google Scholar
Lu, C., Pan, Z., Yang, F. & Wu, C. Interlayer-coupling-driven high-temperature superconductivity in La3Ni2O7 under pressure. Phys. Rev. Lett. 132, 146002 (2024).
Google Scholar
Qu, X.-Z. et al. Bilayer t–J–J⊥ model and magnetically mediated pairing in the pressurized nickelate La3Ni2O7. Phys. Rev. Lett. 132, 036502 (2024).
Google Scholar
Oh, H. & Zhang, Y.-H. Type-II t–J model and shared superexchange coupling from Hund’s rule in superconducting La3Ni2O7. Phys. Rev. B 108, 174511 (2023).
Google Scholar
Le, C., Zhan, J., Wu, X. & Hu, J. Landscape of correlated orders in strained bilayer nickelate thin films. Preprint at https://arxiv.org/abs/2501.14665 (2025).
Shao, Z.-Y., Liu, Y.-B., Liu, M. & Yang, F. Band structure and pairing nature of La3Ni2O7 thin film at ambient pressure. Phys. Rev. B 112, 024506 (2025).
Yue, C. et al. Correlated electronic structures and unconventional superconductivity in bilayer nickelate heterostructures. Natl. Sci. Rev. nwaf253 (2025).
Shi, H. et al. The effect of carrier doping and thickness on the electronic structures of La3Ni2O7 thin films. Chin. Phys. Lett. 42, 080708 (2025).
Jiao, K. et al. Enhanced conductivity in Sr doped La3Ni2O7-δ with high-pressure oxygen annealing. Phys. C 621, 1354504 (2024).
Google Scholar
Xu, M. et al. Pressure-dependent “Insulator–Metal–Insulator” behavior in Sr-doped La3Ni2O7. Adv. Electron. Mater. 10, 2400078 (2024).
Google Scholar
Liu, Y., Ou, M., Wang, Y. & Wen, H.-H. Temperature-independent Hall coefficient in hole-doped La3Ni2O7 thin films: evidence for single-band transport. J. Phys. Condens. Matter 37, 255502 (2025).
Kim, J. et al. Defect engineering in A2BO4 thin films via surface-reconstructed LaSrAlO4 substrates. Small Methods 6, 2200880 (2022).
Google Scholar
Dong, Z. et al. Visualization of oxygen vacancies and self-doped ligand holes in La3Ni2O7−δ. Nature 630, 847–852 (2024).
Google Scholar
Wang, L. et al. Structure responsible for the superconducting state in La3Ni2O7 at high-pressure and low-temperature conditions. J. Am. Chem. Soc. 146, 7506–7514 (2024).
Google Scholar
Hsu, Y.-T. et al. Transport phase diagram and anomalous metallicity in superconducting infinite-layer nickelates. Nat. Commun. 15, 9863 (2024).
Google Scholar
Lee, K. et al. Linear-in-temperature resistivity for optimally superconducting (Nd,Sr)NiO2. Nature 619, 288–292 (2023).
Google Scholar
Cooper, R. A. et al. Anomalous criticality in the electrical resistivity of La2–xSrxCuO4. Science 323, 603–607 (2009).
Google Scholar
Wang, B. Y. et al. Electronic structure of compressively strained thin film La2PrNi2O7. Preprint at https://arxiv.org/abs/2504.16372 (2025).
Li, D. et al. Superconducting dome in Nd1–xSrxNiO2 infinite layer films. Phys. Rev. Lett. 125, 027001 (2020).
Google Scholar
Zeng, S. et al. Phase diagram and superconducting dome of infinite-layer Nd1–xSrxNiO2 thin films. Phys. Rev. Lett. 125, 147003 (2020).
Google Scholar
Song, Q. et al. Antiferromagnetic metal phase in an electron-doped rare-earth nickelate. Nat. Phys. 19, 522–528 (2023).
Google Scholar
Biswas, A. et al. Selective A– or B-site single termination on surfaces of layered oxide SrLaAlO4. Appl. Phys. Lett. 102, 051603 (2013).
Lee, J. H. et al. Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy. Nat. Mater. 13, 879–883 (2014).
Google Scholar
Nie, Y. F. et al. Atomically precise interfaces from non-stoichiometric deposition. Nat. Commun. 5, 4530 (2014).
Google Scholar
Nord, M., Vullum, P. E., MacLaren, I., Tybell, T. & Holmestad, R. Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting. Adv. Struct. Chem. Imaging 3, 9 (2017).
Google Scholar
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
Google Scholar
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Google Scholar
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Google Scholar
Ling, C. D., Argyriou, D. N., Wu, G. & Neumeier, J. J. Neutron diffraction study of La3Ni2O7: structural relationships among n = 1, 2, and 3 phases Lan+1NinO3n+1. J. Solid State Chem. 152, 517–525 (2000).
Google Scholar