• May 21, 2025
  • Live Match Score
  • 0


  • Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    Article 
    CAS 

    Google Scholar 

  • Manthiram, A., Fu, Y., Chung, S. H., Zu, C. & Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 114, 11751–11787 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gu, J. et al. Advances in sulfide-based all-solid-state lithium-sulfur battery: materials, composite electrodes and electrochemo-mechanical effects. Chem. Eng J. 454, 139923 (2023).

    Article 
    CAS 

    Google Scholar 

  • Phuc, N. H. H., Hikima, K., Muto, H. & Matsuda, A. Recent developments in materials design for all-solid-state Li–S batteries. Crit. Rev. Solid State Mater. Sci. 47, 283–308 (2021).

    Article 

    Google Scholar 

  • Liu, J. et al. The interface between Li6.5La3Zr1.5Ta0.5O12 and liquid electrolyte. Joule 4, 101–108 (2020).

    Article 
    CAS 

    Google Scholar 

  • Xu, S. et al. A high capacity all solid‐state Li‐sulfur battery enabled by conversion‐intercalation hybrid cathode architecture. Adv. Funct. Mater. 31, 2004239 (2020).

    Article 

    Google Scholar 

  • Adeli, P. et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chem. Int. Ed. 58, 8681–8686 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zhou, L., Minafra, N., Zeier, W. G. & Nazar, L. F. Innovative approaches to Li-argyrodite solid electrolytes for all-solid-state lithium batteries. Acc. Chem. Res. 54, 2717–2728 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ohno, S. & Zeier, W. G. Toward practical solid-state lithium–sulfur batteries: challenges and perspectives. Acc. Mater. Res. 2, 869–880 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ohno, S., Rosenbach, C., Dewald, G. F., Janek, J. & Zeier, W. G. Linking solid electrolyte degradation to charge carrier transport in the thiophosphate-based composite cathode toward solid-state lithium-sulfur batteries. Adv. Funct. Mater. 31, 2010620 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zhu, Y., He, X. & Mo, Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nagao, M. et al. All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte. J. Power Sources 222, 237–242 (2013).

    Article 
    CAS 

    Google Scholar 

  • Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shao, B., Huang, Y. & Han, F. Electronic conductivity of lithium solid electrolytes. Adv. Energy Mater. 13, 2204098 (2023).

    Article 
    CAS 

    Google Scholar 

  • Zhou, L. et al. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat. Energy 7, 83–93 (2022).

    Article 
    CAS 

    Google Scholar 

  • Yin, Y.-C. et al. A LaCl3-based lithium superionic conductor compatible with lithium metal. Nature 616, 77–83 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schwietert, T. K. et al. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater. 19, 428–435 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, L. et al. Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv. Mater. 31, e1903955 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Zhao, M. et al. Electrochemical phase evolution of metal-based pre-catalysts for high-rate polysulfide conversion. Angew. Chem. Int. Ed. 59, 9011–9017 (2020).

    Article 
    CAS 

    Google Scholar 

  • Shen, Z. et al. Rational design of a Ni3N0.85 electrocatalyst to accelerate polysulfide conversion in lithium-sulfur batteries. ACS Nano 14, 6673–6682 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tang, C. et al. Nitrogen-doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries. Adv. Mater. 26, 6100–6105 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Z. et al. Tantalum-based electrocatalyst for polysulfide catalysis and retention for high-performance lithium-sulfur batteries. Matter 3, 920–934 (2020).

    Article 

    Google Scholar 

  • Xiang, M. et al. A flexible 3D multifunctional MgO-decorated carbon foam@CNTs hybrid as self-supported cathode for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 27, 1702573 (2017).

    Article 

    Google Scholar 

  • Fretz, S. J., Pal, U., Girard, G. M. A., Howlett, P. C. & Palmqvist, A. E. C. Lithium sulfonate functionalization of carbon cathodes as a substitute for lithium nitrate in the electrolyte of lithium–sulfur batteries. Adv. Funct. Mater. 30, 2002485 (2020).

    Article 
    CAS 

    Google Scholar 

  • Liu, L. et al. Confinement and electrocatalysis of cerium fluoride nanocages to boost the lithium–sulfur batteries performance. Small Struct. 3, 2200050 (2022).

    Article 
    CAS 

    Google Scholar 

  • Pang, Q. & Nazar, L. F. Long-life and high-areal-capacity Li–S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption. ACS Nano 10, 4111–4118 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pang, Q., Liang, X., Kwok, C. Y., Kulisch, J. & Nazar, L. F. A comprehensive approach toward stable lithium–sulfur batteries with high volumetric energy density. Adv. Energy Mater. 7, 1601630 (2016).

    Article 

    Google Scholar 

  • Zuo, T. T. et al. Impact of the chlorination of lithium argyrodites on the electrolyte/cathode interface in solid-state batteries. Angew. Chem. Int. Ed. 62, e202213228 (2023).

    Article 
    CAS 

    Google Scholar 

  • Wang, C. et al. All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy Environ. Sci. 14, 2577–2619 (2021).

    Article 
    CAS 

    Google Scholar 

  • Tan, D. H. S. et al. Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte. ACS Energy Lett. 4, 2418–2427 (2019).

    Article 
    CAS 

    Google Scholar 

  • Walther, F. et al. Visualization of the interfacial decomposition of composite cathodes in argyrodite-based all-solid-state batteries using time-of-flight secondary-ion mass spectrometry. Chem. Mater. 31, 3745–3755 (2019).

    Article 
    CAS 

    Google Scholar 

  • Peng, H.-J. et al. Strongly coupled interfaces between a heterogeneous carbon host and a sulfur-containing guest for highly stable lithium-sulfur batteries: mechanistic insight into capacity degradation. Adv. Mater. Interfaces 1, 1400227 (2014).

    Article 

    Google Scholar 

  • Song, J., Yu, Z., Gordin, M. L. & Wang, D. Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium–sulfur batteries. Nano Lett. 16, 864–870 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pang, Q. et al. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium–sulfur batteries. Adv. Mater. 27, 6021–6028 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, J. et al. A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries. Nano Lett. 15, 5137–5142 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, Y. et al. An autotransferable g-C3N4 Li+-modulating layer toward stable lithium anodes. Adv. Mater. 31, 1900342 (2019).

    Article 

    Google Scholar 

  • Yu, W., Yu, Z., Cui, Y. & Bao, Z. Degradation and speciation of Li salts during XPS analysis for battery research. ACS Energy Lett. 7, 3270–3275 (2022).

    Article 
    CAS 

    Google Scholar 

  • Sharma, J., Gora, T., Rimstidt, J. D. & Staley, R. X-ray photoelectron spectra of the alkali azides. Chem. Phys. Lett. 15, 232–235 (1972).

    Article 
    CAS 

    Google Scholar 

  • Zhang, J. et al. Microemulsion assisted assembly of 3D porous S/graphene@g-C3N4 hybrid sponge as free-standing cathodes for high energy density Li–S batteries. Adv. Energy Mater. 8, 1702839 (2018).

    Article 

    Google Scholar 

  • Jin, Y. et al. High-energy-density solid-electrolyte-based liquid Li-S and Li-Se batteries. Joule 4, 262–274 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhou, J. et al. Healable and conductive sulfur iodide for solid-state Li–S batteries. Nature 627, 301–305 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, L. et al. Taming metal–solid electrolyte interface instability via metal strain hardening. Adv. Energy Mater. 13, 2300679 (2023).

    Article 
    CAS 

    Google Scholar 

  • Pan, H. et al. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability. Sci. Adv. 8, eabn4372 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    CAS 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article 

    Google Scholar 

  • Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article 
    CAS 

    Google Scholar 

  • Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Zvereva, E., Caliste, D. & Pochet, P. Interface identification of the solid electrolyte interphase on graphite. Carbon 111, 789–795 (2017).

    Article 
    CAS 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *