
Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).
Google Scholar
Manthiram, A., Fu, Y., Chung, S. H., Zu, C. & Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 114, 11751–11787 (2014).
Google Scholar
Gu, J. et al. Advances in sulfide-based all-solid-state lithium-sulfur battery: materials, composite electrodes and electrochemo-mechanical effects. Chem. Eng J. 454, 139923 (2023).
Google Scholar
Phuc, N. H. H., Hikima, K., Muto, H. & Matsuda, A. Recent developments in materials design for all-solid-state Li–S batteries. Crit. Rev. Solid State Mater. Sci. 47, 283–308 (2021).
Google Scholar
Liu, J. et al. The interface between Li6.5La3Zr1.5Ta0.5O12 and liquid electrolyte. Joule 4, 101–108 (2020).
Google Scholar
Xu, S. et al. A high capacity all solid‐state Li‐sulfur battery enabled by conversion‐intercalation hybrid cathode architecture. Adv. Funct. Mater. 31, 2004239 (2020).
Google Scholar
Adeli, P. et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chem. Int. Ed. 58, 8681–8686 (2019).
Google Scholar
Zhou, L., Minafra, N., Zeier, W. G. & Nazar, L. F. Innovative approaches to Li-argyrodite solid electrolytes for all-solid-state lithium batteries. Acc. Chem. Res. 54, 2717–2728 (2021).
Google Scholar
Ohno, S. & Zeier, W. G. Toward practical solid-state lithium–sulfur batteries: challenges and perspectives. Acc. Mater. Res. 2, 869–880 (2021).
Google Scholar
Ohno, S., Rosenbach, C., Dewald, G. F., Janek, J. & Zeier, W. G. Linking solid electrolyte degradation to charge carrier transport in the thiophosphate-based composite cathode toward solid-state lithium-sulfur batteries. Adv. Funct. Mater. 31, 2010620 (2021).
Google Scholar
Zhu, Y., He, X. & Mo, Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).
Google Scholar
Nagao, M. et al. All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte. J. Power Sources 222, 237–242 (2013).
Google Scholar
Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009).
Google Scholar
Shao, B., Huang, Y. & Han, F. Electronic conductivity of lithium solid electrolytes. Adv. Energy Mater. 13, 2204098 (2023).
Google Scholar
Zhou, L. et al. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat. Energy 7, 83–93 (2022).
Google Scholar
Yin, Y.-C. et al. A LaCl3-based lithium superionic conductor compatible with lithium metal. Nature 616, 77–83 (2023).
Google Scholar
Schwietert, T. K. et al. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater. 19, 428–435 (2020).
Google Scholar
Zhang, L. et al. Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv. Mater. 31, e1903955 (2019).
Google Scholar
Zhao, M. et al. Electrochemical phase evolution of metal-based pre-catalysts for high-rate polysulfide conversion. Angew. Chem. Int. Ed. 59, 9011–9017 (2020).
Google Scholar
Shen, Z. et al. Rational design of a Ni3N0.85 electrocatalyst to accelerate polysulfide conversion in lithium-sulfur batteries. ACS Nano 14, 6673–6682 (2020).
Google Scholar
Tang, C. et al. Nitrogen-doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries. Adv. Mater. 26, 6100–6105 (2014).
Google Scholar
Zhang, Z. et al. Tantalum-based electrocatalyst for polysulfide catalysis and retention for high-performance lithium-sulfur batteries. Matter 3, 920–934 (2020).
Google Scholar
Xiang, M. et al. A flexible 3D multifunctional MgO-decorated carbon foam@CNTs hybrid as self-supported cathode for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 27, 1702573 (2017).
Google Scholar
Fretz, S. J., Pal, U., Girard, G. M. A., Howlett, P. C. & Palmqvist, A. E. C. Lithium sulfonate functionalization of carbon cathodes as a substitute for lithium nitrate in the electrolyte of lithium–sulfur batteries. Adv. Funct. Mater. 30, 2002485 (2020).
Google Scholar
Liu, L. et al. Confinement and electrocatalysis of cerium fluoride nanocages to boost the lithium–sulfur batteries performance. Small Struct. 3, 2200050 (2022).
Google Scholar
Pang, Q. & Nazar, L. F. Long-life and high-areal-capacity Li–S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption. ACS Nano 10, 4111–4118 (2016).
Google Scholar
Pang, Q., Liang, X., Kwok, C. Y., Kulisch, J. & Nazar, L. F. A comprehensive approach toward stable lithium–sulfur batteries with high volumetric energy density. Adv. Energy Mater. 7, 1601630 (2016).
Google Scholar
Zuo, T. T. et al. Impact of the chlorination of lithium argyrodites on the electrolyte/cathode interface in solid-state batteries. Angew. Chem. Int. Ed. 62, e202213228 (2023).
Google Scholar
Wang, C. et al. All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy Environ. Sci. 14, 2577–2619 (2021).
Google Scholar
Tan, D. H. S. et al. Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte. ACS Energy Lett. 4, 2418–2427 (2019).
Google Scholar
Walther, F. et al. Visualization of the interfacial decomposition of composite cathodes in argyrodite-based all-solid-state batteries using time-of-flight secondary-ion mass spectrometry. Chem. Mater. 31, 3745–3755 (2019).
Google Scholar
Peng, H.-J. et al. Strongly coupled interfaces between a heterogeneous carbon host and a sulfur-containing guest for highly stable lithium-sulfur batteries: mechanistic insight into capacity degradation. Adv. Mater. Interfaces 1, 1400227 (2014).
Google Scholar
Song, J., Yu, Z., Gordin, M. L. & Wang, D. Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium–sulfur batteries. Nano Lett. 16, 864–870 (2016).
Google Scholar
Pang, Q. et al. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium–sulfur batteries. Adv. Mater. 27, 6021–6028 (2015).
Google Scholar
Liu, J. et al. A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries. Nano Lett. 15, 5137–5142 (2015).
Google Scholar
Guo, Y. et al. An autotransferable g-C3N4 Li+-modulating layer toward stable lithium anodes. Adv. Mater. 31, 1900342 (2019).
Google Scholar
Yu, W., Yu, Z., Cui, Y. & Bao, Z. Degradation and speciation of Li salts during XPS analysis for battery research. ACS Energy Lett. 7, 3270–3275 (2022).
Google Scholar
Sharma, J., Gora, T., Rimstidt, J. D. & Staley, R. X-ray photoelectron spectra of the alkali azides. Chem. Phys. Lett. 15, 232–235 (1972).
Google Scholar
Zhang, J. et al. Microemulsion assisted assembly of 3D porous S/graphene@g-C3N4 hybrid sponge as free-standing cathodes for high energy density Li–S batteries. Adv. Energy Mater. 8, 1702839 (2018).
Google Scholar
Jin, Y. et al. High-energy-density solid-electrolyte-based liquid Li-S and Li-Se batteries. Joule 4, 262–274 (2020).
Google Scholar
Zhou, J. et al. Healable and conductive sulfur iodide for solid-state Li–S batteries. Nature 627, 301–305 (2024).
Google Scholar
Zhao, L. et al. Taming metal–solid electrolyte interface instability via metal strain hardening. Adv. Energy Mater. 13, 2300679 (2023).
Google Scholar
Pan, H. et al. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability. Sci. Adv. 8, eabn4372 (2022).
Google Scholar
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Google Scholar
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Google Scholar
Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).
Google Scholar
Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).
Google Scholar
Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009).
Google Scholar
Zvereva, E., Caliste, D. & Pochet, P. Interface identification of the solid electrolyte interphase on graphite. Carbon 111, 789–795 (2017).
Google Scholar