• September 1, 2025
  • Live Match Score
  • 0


  • Cullis, P. R. & Felgner, P. L. The 60-year evolution of lipid nanoparticles for nucleic acid delivery. Nat. Rev. Drug Discov. 23, 709–722 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Kulkarni, J. A. et al. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 16, 630–643 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, S. et al. Nanotechnology-based mRNA vaccines. Nat. Rev. Methods Primers 3, 63 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, J., Eygeris, Y., Ryals, R. C., Jozić, A. & Sahay, G. Strategies for non-viral vectors targeting organs beyond the liver. Nat. Nanotechnol. 19, 428–447 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Herrera-Barrera, M. et al. Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates. Sci. Adv. 9, eadd4623 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kedmi, R. et al. A modular platform for targeted RNAi therapeutics. Nat. Nanotechnol. 13, 214–219 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lian, X. et al. Bone-marrow-homing lipid nanoparticles for genome editing in diseased and malignant haematopoietic stem cells. Nat. Nanotechnol. 19, 1409–1417 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Han, X. et al. Ligand-tethered lipid nanoparticles for targeted RNA delivery to treat liver fibrosis. Nat. Commun. 14, 75 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lei, J. et al. Development of mannosylated lipid nanoparticles for mRNA cancer vaccine with high antigen presentation efficiency and immunomodulatory capability. Angew. Chem. Int. Ed. 63, e202318515 (2024).

    CAS 

    Google Scholar 

  • Gautam, M. et al. Lipid nanoparticles with PEG-variant surface modifications mediate genome editing in the mouse retina. Nat. Commun. 14, 6468 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Melamed, J. R. et al. Ionizable lipid nanoparticles deliver mRNA to pancreatic β cells via macrophage-mediated gene transfer. Sci. Adv. 9, eade1444 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abd Elwakil, M. M. et al. Harnessing topology and stereochemistry of glycidylamine-derived lipid nanoparticles for in vivo mRNA delivery to immune cells in spleen and their application for cancer vaccination. Adv. Funct. Mater. 33, 2303795 (2023).

    CAS 

    Google Scholar 

  • Zhang, R. et al. Esterase-labile quaternium lipidoid enabling improved mRNA-LNP stability and spleen-selective mRNA transfection. Adv. Mater. 35, 2303614 (2023).

    CAS 

    Google Scholar 

  • Chen, J. et al. Combinatorial design of ionizable lipid nanoparticles for muscle-selective mRNA delivery with minimized off-target effects. Proc. Natl Acad. Sci. USA 120, e2309472120 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Z. et al. Enzyme-catalyzed one-step synthesis of ionizable cationic lipids for lipid nanoparticle-based mRNA COVID-19 vaccines. ACS Nano 16, 18936–18950 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Han, X. et al. Fast and facile synthesis of amidine-incorporated degradable lipids for versatile mRNA delivery in vivo. Nat. Chem. 16, 1687–1697 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miao, L. et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat. Biotechnol. 37, 1174–1185 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Zhu, Y. et al. Screening for lipid nanoparticles that modulate the immune activity of helper T cells towards enhanced antitumour activity. Nat. Biomed. Eng. 8, 544–560 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Dahlman, J. E. et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl Acad. Sci. USA 114, 2060–2065 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xue, L. et al. High-throughput barcoding of nanoparticles identifies cationic, degradable lipid-like materials for mRNA delivery to the lungs in female preclinical models. Nat. Commun. 15, 1884 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rhym, L. H., Manan, R. S., Koller, A., Stephanie, G. & Anderson, D. G. Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA delivery. Nat. Biomed. Eng. 7, 901–910 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Li, B. et al. Accelerating ionizable lipid discovery for mRNA delivery using machine learning and combinatorial chemistry. Nat. Mater. 23, 1002–1008 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Eygeris, Y., Gupta, M., Kim, J. & Sahay, G. Chemistry of lipid nanoparticles for RNA delivery. Acc. Chem. Res. 55, 2–12 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Qiu, M., Li, Y., Bloomer, H. & Xu, Q. Developing biodegradable lipid nanoparticles for intracellular mRNA delivery and genome editing. Acc. Chem. Res. 54, 4001–4011 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y., Sun, C., Wang, C., Jankovic, K. E. & Dong, Y. Lipids and lipid derivatives for RNA delivery. Chem. Rev. 121, 12181–12277 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thalmayr, S. et al. Molecular chameleon carriers for nucleic acid delivery: the sweet spot between lipoplexes and polyplexes. Adv. Mater. 35, 2211105 (2023).

    CAS 

    Google Scholar 

  • Lin, Y. et al. Chemical evolution of amphiphilic xenopeptides for potentiated Cas9 ribonucleoprotein delivery. J. Am. Chem. Soc. 145, 15171–15179 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong, Y. et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc. Natl Acad. Sci. USA 111, 3955–3960 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, M. H. Y. et al. Induction of bleb structures in lipid nanoparticle formulations of mRNA leads to improved transfection potency. Adv. Mater. 35, 2303370 (2023).

    CAS 

    Google Scholar 

  • Jayaraman, M. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. 51, 8529–8533 (2012).

    CAS 

    Google Scholar 

  • Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tilstra, G. et al. Iterative design of ionizable lipids for intramuscular mRNA delivery. J. Am. Chem. Soc. 145, 2294–2304 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Qiu, M. et al. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proc. Natl Acad. Sci. USA 119, e2116271119 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fenton, O. S. et al. Synthesis and biological evaluation of ionizable lipid materials for the in vivo delivery of messenger RNA to B lymphocytes. Adv. Mater. 29, 1606944 (2017).

    Google Scholar 

  • Fei, Y. et al. Simplified lipid nanoparticles for tissue- and cell-targeted mRNA delivery facilitate precision tumor therapy in a lung metastasis mouse model. Adv. Mater. 36, 2409812 (2024).

    CAS 

    Google Scholar 

  • Xue, L. et al. Rational design of bisphosphonate lipid-like materials for mRNA delivery to the bone microenvironment. J. Am. Chem. Soc. 144, 9926–9937 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Paunovska, K. et al. A direct comparison of in vitro and in vivo nucleic acid delivery mediated by hundreds of nanoparticles reveals a weak correlation. Nano Lett. 18, 2148–2157 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Whitehead, K. A. et al. In vitro–in vivo translation of lipid nanoparticles for hepatocellular siRNA delivery. ACS Nano 6, 6922–6929 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, P., Deng, H., Wang, C., Zhou, Y. & Chen, X. Cellular trafficking of nanotechnology-mediated mRNA delivery. Adv. Mater. 36, 2307822 (2024).

    CAS 

    Google Scholar 

  • Hashiba, K. et al. Branching ionizable lipids can enhance the stability, fusogenicity, and functional delivery of mRNA. Small Sci. 3, 2200071 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nat. Mater. 20, 701–710 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miao, L. et al. Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. Nat. Commun. 11, 2424 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, Y. et al. In vivo editing of lung stem cells for durable gene correction in mice. Science 384, 1196–1202 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, T. et al. Lung SORT LNPs enable precise homology-directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models. Nat. Commun. 14, 7322 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • An, M. et al. Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nat. Biotechnol. 42, 1526–1537 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davis, J. R. et al. Efficient prime editing in mouse brain, liver and heart with dual AAVs. Nat. Biotechnol. 42, 253–264 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Nelson, J. W. et al. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. 40, 402–410 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, P. J. et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635–5652.e29 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zou, Q. et al. Photoactivatable base editors for spatiotemporally controlled genome editing in vivo. Biomaterials 302, 122328 (2023).

    CAS 
    PubMed 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *