
Roth, T. L. et al. Transcranial amelioration of inflammation and cell death after brain injury. Nature 505, 223–228 (2014).
Google Scholar
Villapol, S., Balarezo, M. G., Affram, K., Saavedra, J. M. & Symes, A. J. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage. Brain 138, 3299–3315 (2015).
Google Scholar
Jamjoom, A. A. B., Rhodes, J., Andrews, P. J. D. & Grant, S. G. N. The synapse in traumatic brain injury. Brain 144, 18–31 (2021).
Google Scholar
Empl, L. et al. Selective plasticity of callosal neurons in the adult contralesional cortex following murine traumatic brain injury. Nat. Commun. 13, 2659 (2022).
Google Scholar
Ruddy, R. M., Adams, K. V. & Morshead, C. M. Age- and sex-dependent effects of metformin on neural precursor cells and cognitive recovery in a model of neonatal stroke. Sci. Adv. 5, eaax1912 (2019).
Google Scholar
Luo, Y. et al. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell 161, 1175–1186 (2015).
Google Scholar
Ziegler, A. N., Levison, S. W. & Wood, T. L. Insulin and IGF receptor signalling in neural-stem-cell homeostasis. Nat. Rev. Endocrinol. 11, 161–170 (2015).
Google Scholar
Mercier, F. Fractones: extracellular matrix niche controlling stem cell fate and growth factor activity in the brain in health and disease. Cell. Mol. Life Sci. 73, 4661–4674 (2016).
Google Scholar
Hao, M. et al. Hydroxyapatite nanorods function as safe and effective growth factors regulating neural differentiation and neuron development. Adv. Mater. 33, e2100895 (2021).
Google Scholar
Kong, Y. et al. Regulation of stem cell fate using nanostructure-mediated physical signals. Chem. Soc. Rev. 50, 12828–12872 (2021).
Google Scholar
He, L. et al. Electrical stimulation at nanoscale topography boosts neural stem cell neurogenesis through the enhancement of autophagy signaling. Biomaterials 268, 120585 (2021).
Google Scholar
Liu, Z., Wan, X., Wang, Z. L. & Li, L. Electroactive biomaterials and systems for cell fate determination and tissue regeneration: design and applications. Adv. Mater. 33, e2007429 (2021).
Google Scholar
Yang, H. et al. Gold nanostrip array-mediated wireless electrical stimulation for accelerating functional neuronal differentiation. Adv. Sci. 9, e2202376 (2022).
Google Scholar
Lai, B. Q. et al. Stem cell-derived neuronal relay strategies and functional electrical stimulation for treatment of spinal cord injury. Biomaterials 279, 121211 (2021).
Google Scholar
Xiao, C. et al. One-dimensional ferroelectric nanoarrays with wireless switchable static and dynamic electrical stimulation for selective regulating osteogenesis and antiosteosarcoma. ACS Nano 16, 20770–20785 (2022).
Google Scholar
Grill, W. M., Norman, S. E. & Bellamkonda, R. V. Implanted neural interfaces: biochallenges and engineered solutions. Annu. Rev. Biomed. Eng. 11, 1–24 (2009).
Google Scholar
Zitnik, R. J. Treatment of chronic inflammatory diseases with implantable medical devices. Ann. Rheum. Dis. 70, i67–i70 (2011).
Google Scholar
Marino, A. et al. Piezoelectric barium titanate nanostimulators for the treatment of glioblastoma multiforme. J. Colloid Interface Sci. 538, 449–461 (2019).
Google Scholar
Pucci, C. et al. Ultrasound-responsive nutlin-loaded nanoparticles for combined chemotherapy and piezoelectric treatment of glioblastoma cells. Acta Biomater. 139, 218–236 (2022).
Google Scholar
Ciofani, G. et al. Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation. ACS Nano 4, 6267–6277 (2010).
Google Scholar
Hoop, M. et al. Ultrasound-mediated piezoelectric differentiation of neuron-like PC12 cells on PVDF membranes. Sci. Rep. 7, 4028 (2017).
Google Scholar
Wei, M., Li, S. & Le, W. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms. J. Nanobiotechnology 15, 75 (2017).
Google Scholar
Zhu, P., Chen, Y. & Shi, J. Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3-mediated piezoelectricity. Adv. Mater. 32, e2001976 (2020).
Google Scholar
Jiang, B. et al. Barium titanate at the nanoscale: controlled synthesis and dielectric and ferroelectric properties. Chem. Soc. Rev. 48, 1194–1228 (2019).
Google Scholar
Zhao, D. et al. Electromagnetized-nanoparticle-modulated neural plasticity and recovery of degenerative dopaminergic neurons in the mid-brain. Adv. Mater. 32, e2003800 (2020).
Google Scholar
Marino, A. et al. Piezoelectric nanoparticle-assisted wireless neuronal stimulation. ACS Nano 9, 7678–7689 (2015).
Google Scholar
Arhem, P. Voltage sensing in ion channels: a 50-year-old mystery resolved? Lancet 363, 1221–1223 (2004).
Google Scholar
Li, H. et al. Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect. Nano Lett. 15, 2372–2379 (2015).
Google Scholar
Khacho, M., Harris, R. & Slack, R. S. Mitochondria as central regulators of neural stem cell fate and cognitive function. Nat. Rev. Neurosci. 20, 34–48 (2019).
Google Scholar
Shen, Y. et al. Biomaterial cues regulated differentiation of neural stem cells into GABAergic neurons through Ca2+/c-Jun/TLX3 signaling promoted by hydroxyapatite nanorods. Nano Lett. 21, 7371–7378 (2021).
Google Scholar
Schley, N. D. et al. Distinguishing homogeneous from heterogeneous catalysis in electrode-driven water oxidation with molecular iridium complexes. J. Am. Chem. Soc. 133, 10473–10481 (2011).
Google Scholar
Selvaraj, P., Tanaka, M., Wen, J. & Zhang, Y. The novel monoacylglycerol lipase inhibitor MJN110 suppresses neuroinflammation, normalizes synaptic composition and improves behavioral performance in the repetitive traumatic brain injury mouse model. Cells 10, 3454 (2021).
Google Scholar
Wang, C. S., McCarthy, C. I., Guzikowski, N. J., Kavalali, E. T. & Monteggia, L. M. Brain-derived neurotrophic factor scales presynaptic calcium transients to modulate excitatory neurotransmission. Proc. Natl Acad. Sci. USA 121, e2303664121 (2024).
Google Scholar
Zhu, J. et al. The mechanosensitive ion channel Piezo1 contributes to ultrasound neuromodulation. Proc. Natl Acad. Sci. USA 120, e2300291120 (2023).
Google Scholar
Kollewe, A. et al. Subunit composition, molecular environment, and activation of native TRPC channels encoded by their interactomes. Neuron 110, 4162–4175 e4167 (2022).
Google Scholar
Maier, L. S. & Bers, D. M. Role of Ca2+/calmodulin-dependent protein kinase (CaMK) in excitation–contraction coupling in the heart. Cardiovasc. Res. 73, 631–640 (2007).
Google Scholar
Kong, G. et al. AMPK controls the axonal regenerative ability of dorsal root ganglia sensory neurons after spinal cord injury. Nat. Metab. 2, 918–933 (2020).
Google Scholar
Carlezon, W. A. Jr., Duman, R. S. & Nestler, E. J. The many faces of CREB. Trends Neurosci. 28, 436–445 (2005).
Google Scholar
Allen, S. J., Watson, J. J., Shoemark, D. K., Barua, N. U. & Patel, N. K. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol. Ther. 138, 155–175 (2013).
Google Scholar
Wang, Z. et al. The neuroprotective mechanism of sevoflurane in rats with traumatic brain injury via FGF2. J. Neuroinflammation 19, 51 (2022).
Google Scholar
Chen, J. et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32, 1005–1011 (2001).
Google Scholar
Tian, X. et al. NeuN-specific fluorescent probe revealing neuronal nuclei protein and nuclear acids association in living neurons under STED nanoscopy. ACS Appl. Mater. Interfaces 10, 31959–31964 (2018).
Google Scholar
Aboody, K., Capela, A., Niazi, N., Stern, J. H. & Temple, S. Translating stem cell studies to the clinic for CNS repair: current state of the art and the need for a Rosetta stone. Neuron 70, 597–613 (2011).
Google Scholar
Miao, P. et al. Graphene nanostructure-based tactile sensors for electronic skin applications. Nanomicro Lett. 11, 71 (2019).
Google Scholar
Wu, J. et al. Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3. ACS Appl. Mater. Interfaces 10, 17842–17849 (2018).
Google Scholar
Gu, W. et al. Palladium cubes with Pt shell deposition for localized surface plasmon resonance enhanced photodynamic and photothermal therapy of hypoxic tumors. Biomater. Sci. 10, 216–226 (2021).
Google Scholar
Thomas, H. R., Marsden, A. J., Walker, M., Wilson, N. R. & Rourke, J. P. Sulfur-functionalized graphene oxide by epoxide ring-opening. Angew. Chem. Int Ed. Engl. 53, 7613–7618 (2014).
Google Scholar
Welkenhuysen, M. et al. An integrated multi-electrode-optrode array for in vitro optogenetics. Sci. Rep. 6, 20353 (2016).
Google Scholar
Martinez, A. L. et al. Identification of sodium transients through NaV1.5 channels as regulators of differentiation in immortalized dorsal root ganglia neurons. Front Cell Neurosci. 16, 816325 (2022).
Google Scholar
Pan, M. X. et al. Sex-dependent effects of GPER activation on neuroinflammation in a rat model of traumatic brain injury. Brain Behav. Immun. 88, 421–431 (2020).
Google Scholar
Lee, J. Y. et al. Human parthenogenetic neural stem cell grafts promote multiple regenerative processes in a traumatic brain injury model. Theranostics 9, 1029–1046 (2019).
Google Scholar
Bae, M. et al. Neural stem cell delivery using brain-derived tissue-specific bioink for recovering from traumatic brain injury. Biofabrication 13, 044110 (2021).
Google Scholar