• May 18, 2025
  • Live Match Score
  • 0


  • Roth, T. L. et al. Transcranial amelioration of inflammation and cell death after brain injury. Nature 505, 223–228 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Villapol, S., Balarezo, M. G., Affram, K., Saavedra, J. M. & Symes, A. J. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage. Brain 138, 3299–3315 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jamjoom, A. A. B., Rhodes, J., Andrews, P. J. D. & Grant, S. G. N. The synapse in traumatic brain injury. Brain 144, 18–31 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Empl, L. et al. Selective plasticity of callosal neurons in the adult contralesional cortex following murine traumatic brain injury. Nat. Commun. 13, 2659 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ruddy, R. M., Adams, K. V. & Morshead, C. M. Age- and sex-dependent effects of metformin on neural precursor cells and cognitive recovery in a model of neonatal stroke. Sci. Adv. 5, eaax1912 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo, Y. et al. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell 161, 1175–1186 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ziegler, A. N., Levison, S. W. & Wood, T. L. Insulin and IGF receptor signalling in neural-stem-cell homeostasis. Nat. Rev. Endocrinol. 11, 161–170 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mercier, F. Fractones: extracellular matrix niche controlling stem cell fate and growth factor activity in the brain in health and disease. Cell. Mol. Life Sci. 73, 4661–4674 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hao, M. et al. Hydroxyapatite nanorods function as safe and effective growth factors regulating neural differentiation and neuron development. Adv. Mater. 33, e2100895 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Kong, Y. et al. Regulation of stem cell fate using nanostructure-mediated physical signals. Chem. Soc. Rev. 50, 12828–12872 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • He, L. et al. Electrical stimulation at nanoscale topography boosts neural stem cell neurogenesis through the enhancement of autophagy signaling. Biomaterials 268, 120585 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Z., Wan, X., Wang, Z. L. & Li, L. Electroactive biomaterials and systems for cell fate determination and tissue regeneration: design and applications. Adv. Mater. 33, e2007429 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Yang, H. et al. Gold nanostrip array-mediated wireless electrical stimulation for accelerating functional neuronal differentiation. Adv. Sci. 9, e2202376 (2022).

    Article 

    Google Scholar 

  • Lai, B. Q. et al. Stem cell-derived neuronal relay strategies and functional electrical stimulation for treatment of spinal cord injury. Biomaterials 279, 121211 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xiao, C. et al. One-dimensional ferroelectric nanoarrays with wireless switchable static and dynamic electrical stimulation for selective regulating osteogenesis and antiosteosarcoma. ACS Nano 16, 20770–20785 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Grill, W. M., Norman, S. E. & Bellamkonda, R. V. Implanted neural interfaces: biochallenges and engineered solutions. Annu. Rev. Biomed. Eng. 11, 1–24 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zitnik, R. J. Treatment of chronic inflammatory diseases with implantable medical devices. Ann. Rheum. Dis. 70, i67–i70 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Marino, A. et al. Piezoelectric barium titanate nanostimulators for the treatment of glioblastoma multiforme. J. Colloid Interface Sci. 538, 449–461 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pucci, C. et al. Ultrasound-responsive nutlin-loaded nanoparticles for combined chemotherapy and piezoelectric treatment of glioblastoma cells. Acta Biomater. 139, 218–236 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ciofani, G. et al. Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation. ACS Nano 4, 6267–6277 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hoop, M. et al. Ultrasound-mediated piezoelectric differentiation of neuron-like PC12 cells on PVDF membranes. Sci. Rep. 7, 4028 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, M., Li, S. & Le, W. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms. J. Nanobiotechnology 15, 75 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, P., Chen, Y. & Shi, J. Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3-mediated piezoelectricity. Adv. Mater. 32, e2001976 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Jiang, B. et al. Barium titanate at the nanoscale: controlled synthesis and dielectric and ferroelectric properties. Chem. Soc. Rev. 48, 1194–1228 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, D. et al. Electromagnetized-nanoparticle-modulated neural plasticity and recovery of degenerative dopaminergic neurons in the mid-brain. Adv. Mater. 32, e2003800 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Marino, A. et al. Piezoelectric nanoparticle-assisted wireless neuronal stimulation. ACS Nano 9, 7678–7689 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arhem, P. Voltage sensing in ion channels: a 50-year-old mystery resolved? Lancet 363, 1221–1223 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, H. et al. Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect. Nano Lett. 15, 2372–2379 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Khacho, M., Harris, R. & Slack, R. S. Mitochondria as central regulators of neural stem cell fate and cognitive function. Nat. Rev. Neurosci. 20, 34–48 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shen, Y. et al. Biomaterial cues regulated differentiation of neural stem cells into GABAergic neurons through Ca2+/c-Jun/TLX3 signaling promoted by hydroxyapatite nanorods. Nano Lett. 21, 7371–7378 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schley, N. D. et al. Distinguishing homogeneous from heterogeneous catalysis in electrode-driven water oxidation with molecular iridium complexes. J. Am. Chem. Soc. 133, 10473–10481 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Selvaraj, P., Tanaka, M., Wen, J. & Zhang, Y. The novel monoacylglycerol lipase inhibitor MJN110 suppresses neuroinflammation, normalizes synaptic composition and improves behavioral performance in the repetitive traumatic brain injury mouse model. Cells 10, 3454 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, C. S., McCarthy, C. I., Guzikowski, N. J., Kavalali, E. T. & Monteggia, L. M. Brain-derived neurotrophic factor scales presynaptic calcium transients to modulate excitatory neurotransmission. Proc. Natl Acad. Sci. USA 121, e2303664121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, J. et al. The mechanosensitive ion channel Piezo1 contributes to ultrasound neuromodulation. Proc. Natl Acad. Sci. USA 120, e2300291120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kollewe, A. et al. Subunit composition, molecular environment, and activation of native TRPC channels encoded by their interactomes. Neuron 110, 4162–4175 e4167 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maier, L. S. & Bers, D. M. Role of Ca2+/calmodulin-dependent protein kinase (CaMK) in excitation–contraction coupling in the heart. Cardiovasc. Res. 73, 631–640 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kong, G. et al. AMPK controls the axonal regenerative ability of dorsal root ganglia sensory neurons after spinal cord injury. Nat. Metab. 2, 918–933 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carlezon, W. A. Jr., Duman, R. S. & Nestler, E. J. The many faces of CREB. Trends Neurosci. 28, 436–445 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Allen, S. J., Watson, J. J., Shoemark, D. K., Barua, N. U. & Patel, N. K. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol. Ther. 138, 155–175 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Z. et al. The neuroprotective mechanism of sevoflurane in rats with traumatic brain injury via FGF2. J. Neuroinflammation 19, 51 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, J. et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32, 1005–1011 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tian, X. et al. NeuN-specific fluorescent probe revealing neuronal nuclei protein and nuclear acids association in living neurons under STED nanoscopy. ACS Appl. Mater. Interfaces 10, 31959–31964 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aboody, K., Capela, A., Niazi, N., Stern, J. H. & Temple, S. Translating stem cell studies to the clinic for CNS repair: current state of the art and the need for a Rosetta stone. Neuron 70, 597–613 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miao, P. et al. Graphene nanostructure-based tactile sensors for electronic skin applications. Nanomicro Lett. 11, 71 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, J. et al. Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3. ACS Appl. Mater. Interfaces 10, 17842–17849 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gu, W. et al. Palladium cubes with Pt shell deposition for localized surface plasmon resonance enhanced photodynamic and photothermal therapy of hypoxic tumors. Biomater. Sci. 10, 216–226 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Thomas, H. R., Marsden, A. J., Walker, M., Wilson, N. R. & Rourke, J. P. Sulfur-functionalized graphene oxide by epoxide ring-opening. Angew. Chem. Int Ed. Engl. 53, 7613–7618 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Welkenhuysen, M. et al. An integrated multi-electrode-optrode array for in vitro optogenetics. Sci. Rep. 6, 20353 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martinez, A. L. et al. Identification of sodium transients through NaV1.5 channels as regulators of differentiation in immortalized dorsal root ganglia neurons. Front Cell Neurosci. 16, 816325 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pan, M. X. et al. Sex-dependent effects of GPER activation on neuroinflammation in a rat model of traumatic brain injury. Brain Behav. Immun. 88, 421–431 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, J. Y. et al. Human parthenogenetic neural stem cell grafts promote multiple regenerative processes in a traumatic brain injury model. Theranostics 9, 1029–1046 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bae, M. et al. Neural stem cell delivery using brain-derived tissue-specific bioink for recovering from traumatic brain injury. Biofabrication 13, 044110 (2021).

    Article 
    CAS 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *