
Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).
Google Scholar
Shao, Q. et al. Roadmap of spin–orbit torques. IEEE Trans. Magn. 57, 1–39 (2021).
Liu, L. et al. Spin–torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).
Google Scholar
Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).
Google Scholar
Jo, D., Go, D., Choi, G.-M. & Lee, H.-W. Spintronics meets orbitronics: emergence of orbital angular momentum in solids. npj Spintronics 2, 19 (2024).
Wang, P. et al. Orbitronics: mechanisms, materials and devices. Adv. Electron. Mater. 11, 2400554 (2024).
Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Orbitronics: the intrinsic orbital current in p-doped silicon. Phys. Rev. Lett. 95, 066601 (2005).
Google Scholar
Kontani, H., Tanaka, T., Hirashima, D. S., Yamada, K. & Inoue, J. Giant intrinsic spin and orbital Hall effects in Sr2MO4 (M = Ru, Rh, Mo). Phys. Rev. Lett. 100, 096601 (2008).
Google Scholar
Go, D., Jo, D., Kim, C. & Lee, H.-W. Intrinsic spin and orbital Hall effects from orbital texture. Phys. Rev. Lett. 121, 086602 (2018).
Google Scholar
Go, D. & Lee, H.-W. Orbital torque: torque generation by orbital current injection. Phys. Rev. Res. 2, 013177 (2020).
Google Scholar
Jo, D., Go, D. & Lee, H.-W. Gigantic intrinsic orbital Hall effects in weakly spin–orbit coupled metals. Phys. Rev. B 98, 214405 (2018).
Google Scholar
Lee, D. et al. Orbital torque in magnetic bilayers. Nat. Commun. 12, 6710 (2021).
Google Scholar
Choi, Y.-G. et al. Observation of the orbital Hall effect in a light metal Ti. Nature 619, 52–56 (2023).
Google Scholar
Lyalin, I., Alikhah, S., Berritta, M., Oppeneer, P. M. & Kawakami, R. K. Magneto-optical detection of the orbital Hall effect in chromium. Phys. Rev. Lett. 131, 156702 (2023).
Google Scholar
Ding, S. et al. Observation of the orbital Rashba–Edelstein magnetoresistance. Phys. Rev. Lett. 128, 067201 (2022).
Google Scholar
Sala, G., Wang, H., Legrand, W. & Gambardella, P. Orbital Hanle magnetoresistance in a 3d transition metal. Phys. Rev. Lett. 131, 156703 (2023).
Google Scholar
Salemi, L. & Oppeneer, P. M. First-principles theory of intrinsic spin and orbital Hall and Nernst effects in metallic monoatomic crystals. Phys. Rev. Mater. 6, 095001 (2022).
Google Scholar
Yang, Y. et al. Orbital torque switching in perpendicularly magnetized materials. Nat. Commun. 15, 8645 (2024).
Google Scholar
Gupta, R. et al. Harnessing orbital Hall effect in spin–orbit torque MRAM. Nat. Commun. 16, 130 (2025).
Google Scholar
Tang, P. & Bauer, G. E. W. Role of disorder in the intrinsic orbital Hall effect. Phys. Rev. Lett. 133, 186302 (2024).
Google Scholar
Canonico, L. M., Garcia, J. H. & Roche, S. Orbital Hall responses in disordered topological materials. Phys. Rev. B 110, L140201 (2024).
Google Scholar
Liu, H. & Culcer, D. Dominance of extrinsic scattering mechanisms in the orbital Hall effect: graphene, transition metal dichalcogenides, and topological antiferromagnets. Phys. Rev. Lett. 132, 186302 (2024).
Google Scholar
Mankovsky, S. & Ebert, H. Spin and orbital Hall effect in nonmagnetic transition metals: extrinsic versus intrinsic contributions. Phys. Rev. B 110, 184417 (2024).
Google Scholar
Veneri, A., Rappoport, T. G. & Ferreira, A. Extrinsic orbital Hall effect: orbital skew scattering and crossover between diffusive and intrinsic orbital transport. Phys. Rev. Lett. 134, 136201 (2025).
Google Scholar
Rang, M. & Kelly, P. J. Orbital Hall effect in transition metals from first-principles scattering calculations. Phys. Rev. B 111, 125121 (2025).
Google Scholar
Sohn, J., Lee, J. M. & Lee, H.-W. Dyakonov–Perel-like orbital and spin relaxations in centrosymmetric systems. Phys. Rev. Lett. 132, 246301 (2024).
Google Scholar
Kabanov, V. V. & Shumilin, A. V. Impact of the impurity symmetry on orbital momentum relaxation and orbital Hall effect studied by the quantum Boltzmann equation. Phys. Rev. B 110, 235161 (2024).
Google Scholar
Go, D. et al. Long-range orbital torque by momentum-space hotspots. Phys. Rev. Lett. 130, 246701 (2023).
Google Scholar
Seifert, T. S. et al. Time-domain observation of ballistic orbital-angular-momentum currents with giant relaxation length in tungsten. Nat. Nanotechnol. 18, 1132–1138 (2023).
Google Scholar
Hayashi, H. et al. Observation of long-range orbital transport and giant orbital torque. Commun. Phys. 6, 32 (2023).
Gao, T. et al. Control of dynamic orbital response in ferromagnets via crystal symmetry. Nat. Phys. 20, 1896–1903 (2024).
Google Scholar
Moriya, H. et al. Observation of long-range current-induced torque in Ni/Pt bilayers. Nano Lett. 24, 6459–6464 (2024).
Google Scholar
Zhu, L., Ralph, D. C. & Buhrman, R. A. Maximizing spin–orbit torque generated by the spin Hall effect of Pt. Appl. Phys. Rev. 8, 031308 (2021).
Google Scholar
Niimi, Y. et al. Extrinsic spin Hall effect induced by iridium impurities in copper. Phys. Rev. Lett. 106, 126601 (2011).
Google Scholar
Niimi, Y. et al. Giant spin Hall effect induced by skew scattering from bismuth impurities inside thin film CuBi alloys. Phys. Rev. Lett. 109, 156602 (2012).
Google Scholar
Moriya, H., Musha, A., Haku, S. & Ando, K. Observation of the crossover between metallic and insulating regimes of the spin Hall effect. Commun. Phys. 5, 12 (2022).
Google Scholar
Xu, X. et al. Giant extrinsic spin Hall effect in platinum–titanium oxide nanocomposite films. Adv. Sci. 9, 2105726 (2022).
Google Scholar
Wang, P. et al. Giant spin Hall effect and spin–orbit torques in 5d transition metal–aluminum alloys from extrinsic scattering. Adv. Mater. 34, 2109406 (2022).
Google Scholar
Lin, W. et al. Electric field control of the magnetic Weyl fermion in an epitaxial SrRuO3 (111) thin film. Adv. Mater. 33, 2101316 (2021).
Google Scholar
Li, S. et al. Room temperature spin–orbit torque efficiency and magnetization switching in SrRuO3-based heterostructures. Phys. Rev. Mater. 7, 024418 (2023).
Google Scholar
Ou, Y. et al. Exceptionally high, strongly temperature dependent, spin Hall conductivity of SrRuO3. Nano Lett. 19, 3663–3670 (2019).
Zhou, J. et al. Modulation of spin–orbit torque from SrRuO3 by epitaxial‐strain‐induced octahedral rotation. Adv. Mater. 33, 2007114 (2021).
Lu, Z. et al. Heterogeneous integration of single‐crystal SrRuO3 films with large spin Hall conductivity on silicon for spintronic devices. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202500755 (2025).
Lee, S. A. et al. Tuning electromagnetic properties of SrRuO3 epitaxial thin films via atomic control of cation vacancies. Sci. Rep. 7, 11583 (2017).
Google Scholar
Chen, H. et al. Tuning stoichiometry for enhanced spin–charge interconversion in transition metal oxides. Adv. Electron. Mater. 10, 2300666 (2024).
Google Scholar
Tanaka, T. et al. Intrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metals. Phys. Rev. B 77, 165117 (2008).
Gupta, K., Wesselink, R. J. H., Liu, R., Yuan, Z. & Kelly, P. J. Disorder dependence of interface spin memory loss. Phys. Rev. Lett. 124, 087702 (2020).
Google Scholar
Zhu, L., Ralph, D. C. & Buhrman, R. A. Spin–orbit torques in heavy-metal–ferromagnet bilayers with varying strengths of interfacial spin–orbit coupling. Phys. Rev. Lett. 122, 077201 (2019).
Google Scholar
Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213 (2015).
Lee, K.-S., Lee, S.-W., Min, B.-C. & Lee, K.-J. Threshold current for switching of a perpendicular magnetic layer induced by spin Hall effect. Appl. Phys. Lett. 102, 112410 (2013).
Koepernik, K. & Eschrig, H. Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys. Rev. B 59, 1743 (1999).
Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
Google Scholar
Koepernik, K., Janson, O., Sun, Y. & Van Den Brink, J. Symmetry-conserving maximally projected Wannier functions. Phys. Rev. B 107, 235135 (2023).
Google Scholar
Pezo, A., García Ovalle, D. & Manchon, A. Orbital Hall effect in crystals: interatomic versus intra-atomic contributions. Phys. Rev. B 106, 104414 (2022).
Google Scholar