• August 15, 2025
  • Live Match Score
  • 0


  • Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    CAS 

    Google Scholar 

  • Shao, Q. et al. Roadmap of spin–orbit torques. IEEE Trans. Magn. 57, 1–39 (2021).

    Google Scholar 

  • Liu, L. et al. Spin–torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Jo, D., Go, D., Choi, G.-M. & Lee, H.-W. Spintronics meets orbitronics: emergence of orbital angular momentum in solids. npj Spintronics 2, 19 (2024).

    Google Scholar 

  • Wang, P. et al. Orbitronics: mechanisms, materials and devices. Adv. Electron. Mater. 11, 2400554 (2024).

    Google Scholar 

  • Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Orbitronics: the intrinsic orbital current in p-doped silicon. Phys. Rev. Lett. 95, 066601 (2005).

    PubMed 

    Google Scholar 

  • Kontani, H., Tanaka, T., Hirashima, D. S., Yamada, K. & Inoue, J. Giant intrinsic spin and orbital Hall effects in Sr2MO4 (M = Ru, Rh, Mo). Phys. Rev. Lett. 100, 096601 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Go, D., Jo, D., Kim, C. & Lee, H.-W. Intrinsic spin and orbital Hall effects from orbital texture. Phys. Rev. Lett. 121, 086602 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Go, D. & Lee, H.-W. Orbital torque: torque generation by orbital current injection. Phys. Rev. Res. 2, 013177 (2020).

    CAS 

    Google Scholar 

  • Jo, D., Go, D. & Lee, H.-W. Gigantic intrinsic orbital Hall effects in weakly spin–orbit coupled metals. Phys. Rev. B 98, 214405 (2018).

    CAS 

    Google Scholar 

  • Lee, D. et al. Orbital torque in magnetic bilayers. Nat. Commun. 12, 6710 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Choi, Y.-G. et al. Observation of the orbital Hall effect in a light metal Ti. Nature 619, 52–56 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Lyalin, I., Alikhah, S., Berritta, M., Oppeneer, P. M. & Kawakami, R. K. Magneto-optical detection of the orbital Hall effect in chromium. Phys. Rev. Lett. 131, 156702 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Ding, S. et al. Observation of the orbital Rashba–Edelstein magnetoresistance. Phys. Rev. Lett. 128, 067201 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Sala, G., Wang, H., Legrand, W. & Gambardella, P. Orbital Hanle magnetoresistance in a 3d transition metal. Phys. Rev. Lett. 131, 156703 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Salemi, L. & Oppeneer, P. M. First-principles theory of intrinsic spin and orbital Hall and Nernst effects in metallic monoatomic crystals. Phys. Rev. Mater. 6, 095001 (2022).

    CAS 

    Google Scholar 

  • Yang, Y. et al. Orbital torque switching in perpendicularly magnetized materials. Nat. Commun. 15, 8645 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gupta, R. et al. Harnessing orbital Hall effect in spin–orbit torque MRAM. Nat. Commun. 16, 130 (2025).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, P. & Bauer, G. E. W. Role of disorder in the intrinsic orbital Hall effect. Phys. Rev. Lett. 133, 186302 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Canonico, L. M., Garcia, J. H. & Roche, S. Orbital Hall responses in disordered topological materials. Phys. Rev. B 110, L140201 (2024).

    CAS 

    Google Scholar 

  • Liu, H. & Culcer, D. Dominance of extrinsic scattering mechanisms in the orbital Hall effect: graphene, transition metal dichalcogenides, and topological antiferromagnets. Phys. Rev. Lett. 132, 186302 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Mankovsky, S. & Ebert, H. Spin and orbital Hall effect in nonmagnetic transition metals: extrinsic versus intrinsic contributions. Phys. Rev. B 110, 184417 (2024).

    CAS 

    Google Scholar 

  • Veneri, A., Rappoport, T. G. & Ferreira, A. Extrinsic orbital Hall effect: orbital skew scattering and crossover between diffusive and intrinsic orbital transport. Phys. Rev. Lett. 134, 136201 (2025).

    CAS 
    PubMed 

    Google Scholar 

  • Rang, M. & Kelly, P. J. Orbital Hall effect in transition metals from first-principles scattering calculations. Phys. Rev. B 111, 125121 (2025).

    CAS 

    Google Scholar 

  • Sohn, J., Lee, J. M. & Lee, H.-W. Dyakonov–Perel-like orbital and spin relaxations in centrosymmetric systems. Phys. Rev. Lett. 132, 246301 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Kabanov, V. V. & Shumilin, A. V. Impact of the impurity symmetry on orbital momentum relaxation and orbital Hall effect studied by the quantum Boltzmann equation. Phys. Rev. B 110, 235161 (2024).

    CAS 

    Google Scholar 

  • Go, D. et al. Long-range orbital torque by momentum-space hotspots. Phys. Rev. Lett. 130, 246701 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Seifert, T. S. et al. Time-domain observation of ballistic orbital-angular-momentum currents with giant relaxation length in tungsten. Nat. Nanotechnol. 18, 1132–1138 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hayashi, H. et al. Observation of long-range orbital transport and giant orbital torque. Commun. Phys. 6, 32 (2023).

    Google Scholar 

  • Gao, T. et al. Control of dynamic orbital response in ferromagnets via crystal symmetry. Nat. Phys. 20, 1896–1903 (2024).

    CAS 

    Google Scholar 

  • Moriya, H. et al. Observation of long-range current-induced torque in Ni/Pt bilayers. Nano Lett. 24, 6459–6464 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Zhu, L., Ralph, D. C. & Buhrman, R. A. Maximizing spin–orbit torque generated by the spin Hall effect of Pt. Appl. Phys. Rev. 8, 031308 (2021).

    CAS 

    Google Scholar 

  • Niimi, Y. et al. Extrinsic spin Hall effect induced by iridium impurities in copper. Phys. Rev. Lett. 106, 126601 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Niimi, Y. et al. Giant spin Hall effect induced by skew scattering from bismuth impurities inside thin film CuBi alloys. Phys. Rev. Lett. 109, 156602 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Moriya, H., Musha, A., Haku, S. & Ando, K. Observation of the crossover between metallic and insulating regimes of the spin Hall effect. Commun. Phys. 5, 12 (2022).

    CAS 

    Google Scholar 

  • Xu, X. et al. Giant extrinsic spin Hall effect in platinum–titanium oxide nanocomposite films. Adv. Sci. 9, 2105726 (2022).

    CAS 

    Google Scholar 

  • Wang, P. et al. Giant spin Hall effect and spin–orbit torques in 5d transition metal–aluminum alloys from extrinsic scattering. Adv. Mater. 34, 2109406 (2022).

    CAS 

    Google Scholar 

  • Lin, W. et al. Electric field control of the magnetic Weyl fermion in an epitaxial SrRuO3 (111) thin film. Adv. Mater. 33, 2101316 (2021).

    CAS 

    Google Scholar 

  • Li, S. et al. Room temperature spin–orbit torque efficiency and magnetization switching in SrRuO3-based heterostructures. Phys. Rev. Mater. 7, 024418 (2023).

    CAS 

    Google Scholar 

  • Ou, Y. et al. Exceptionally high, strongly temperature dependent, spin Hall conductivity of SrRuO3. Nano Lett. 19, 3663–3670 (2019).

  • Zhou, J. et al. Modulation of spin–orbit torque from SrRuO3 by epitaxial‐strain‐induced octahedral rotation. Adv. Mater. 33, 2007114 (2021).

  • Lu, Z. et al. Heterogeneous integration of single‐crystal SrRuO3 films with large spin Hall conductivity on silicon for spintronic devices. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202500755 (2025).

  • Lee, S. A. et al. Tuning electromagnetic properties of SrRuO3 epitaxial thin films via atomic control of cation vacancies. Sci. Rep. 7, 11583 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, H. et al. Tuning stoichiometry for enhanced spin–charge interconversion in transition metal oxides. Adv. Electron. Mater. 10, 2300666 (2024).

    CAS 

    Google Scholar 

  • Tanaka, T. et al. Intrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metals. Phys. Rev. B 77, 165117 (2008).

    Google Scholar 

  • Gupta, K., Wesselink, R. J. H., Liu, R., Yuan, Z. & Kelly, P. J. Disorder dependence of interface spin memory loss. Phys. Rev. Lett. 124, 087702 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Zhu, L., Ralph, D. C. & Buhrman, R. A. Spin–orbit torques in heavy-metal–ferromagnet bilayers with varying strengths of interfacial spin–orbit coupling. Phys. Rev. Lett. 122, 077201 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213 (2015).

    Google Scholar 

  • Lee, K.-S., Lee, S.-W., Min, B.-C. & Lee, K.-J. Threshold current for switching of a perpendicular magnetic layer induced by spin Hall effect. Appl. Phys. Lett. 102, 112410 (2013).

    Google Scholar 

  • Koepernik, K. & Eschrig, H. Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys. Rev. B 59, 1743 (1999).

    CAS 

    Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Koepernik, K., Janson, O., Sun, Y. & Van Den Brink, J. Symmetry-conserving maximally projected Wannier functions. Phys. Rev. B 107, 235135 (2023).

    CAS 

    Google Scholar 

  • Pezo, A., García Ovalle, D. & Manchon, A. Orbital Hall effect in crystals: interatomic versus intra-atomic contributions. Phys. Rev. B 106, 104414 (2022).

    CAS 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *