• August 23, 2025
  • Live Match Score
  • 0


  • Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    CAS 

    Google Scholar 

  • Neo, W. T., Ye, Q., Chua, S.-J. & Xu, J. Conjugated polymer-based electrochromics: materials, device fabrication and application prospects. J. Mater. Chem. C 4, 7364–7376 (2016).

    CAS 

    Google Scholar 

  • Bian, G., Yin, J. & Zhu, J. Recent advances on conductive 2D covalent organic frameworks. Small 17, 2006043 (2021).

    CAS 

    Google Scholar 

  • Wang, M., Dong, R. & Feng, X. Two-dimensional conjugated metal–organic frameworks (2D c-MOFs): chemistry and function for MOFtronics. Chem. Soc. Rev. 50, 2764–2793 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Yao, Z.-F. et al. Wafer‐scale fabrication of high‐performance n‐type polymer monolayer transistors using a multi‐level self‐assembly strategy. Adv. Mater. 31, 1806747 (2019).

    Google Scholar 

  • Sajjad, M. T., Ruseckas, A. & Samuel, I. D. Enhancing exciton diffusion length provides new opportunities for organic photovoltaics. Matter 3, 341–354 (2020).

    Google Scholar 

  • Flanders, N. C. et al. Large exciton diffusion coefficients in two-dimensional covalent organic frameworks with different domain sizes revealed by ultrafast exciton dynamics. J. Am. Chem. Soc. 142, 14957–14965 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • MacFarlane, L., Zhao, C., Cai, J., Qiu, H. & Manners, I. Emerging applications for living crystallization-driven self-assembly. Chem. Sci. 12, 4661–4682 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qiu, H. et al. Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends. Science 352, 697–701 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • He, X. et al. Two-dimensional assemblies from crystallizable homopolymers with charged termini. Nat. Mater. 16, 481–488 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Tong, Z. et al. Uniform segmented platelet micelles with compositionally distinct and selectively degradable cores. Nat. Chem. 15, 824–831 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • MacFarlane, L. R. et al. Functional nanoparticles through π-conjugated polymer self-assembly. Nat. Rev. Mater. 6, 7–26 (2021).

    CAS 

    Google Scholar 

  • Kamps, A. C., Fryd, M. & Park, S.-J. Hierarchical self-assembly of amphiphilic semiconducting polymers into isolated, bundled, and branched nanofibers. ACS Nano 6, 2844–2852 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Fukui, T. et al. Seeded self-assembly of charge-terminated poly (3-hexylthiophene) amphiphiles based on the energy landscape. J. Am. Chem. Soc. 142, 15038–15048 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Han, L. et al. Uniform two-dimensional square assemblies from conjugated block copolymers driven by π–π interactions with controllable sizes. Nat. Commun. 9, 865 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Qi, R., Zhu, Y., Han, L., Wang, M. & He, F. Rectangular platelet micelles with controlled aspect ratio by hierarchical self-assembly of poly (3-hexylthiophene)-b-poly(ethylene glycol). Macromolecules 53, 6555–6565 (2020).

    CAS 

    Google Scholar 

  • Li, H., Han, L., Zhu, Y., Fernández-Trillo, P. & He, F. Transformation from rod-like to diamond-like micelles by thermally induced nucleation self-assembly. Macromolecules 54, 5278–5285 (2021).

    CAS 

    Google Scholar 

  • Yang, S., Kang, S.-Y. & Choi, T.-L. Morphologically tunable square and rectangular nanosheets of a simple conjugated homopolymer by changing solvents. J. Am. Chem. Soc. 141, 19138–19143 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, S., Kang, S.-Y. & Choi, T.-L. Semi-conducting 2D rectangles with tunable length via uniaxial living crystallization-driven self-assembly of homopolymer. Nat. Commun. 12, 2602 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yun, N. et al. Size-tunable semiconducting 2D nanorectangles from conjugated polyenyne homopolymer synthesized via cascade metathesis and metallotropy polymerization. J. Am. Chem. Soc. 145, 9029–9038 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Jin, X.-H. et al. Long-range exciton transport in conjugated polymer nanofibers prepared by seeded growth. Science 360, 897–900 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Efficient energy funneling in spatially tailored segmented conjugated block copolymer nanofiber–quantum dot or rod conjugates. J. Am. Chem. Soc. 143, 7032–7041 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, S., Su, A., Su, C. & Chen, S. Phase behavior of poly(9,9-di-n-hexyl-2,7-fluorene). J. Phys. Chem. B 110, 4007–4013 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, S., Chou, H., Su, A. & Chen, S. Molecular packing in crystalline poly(9,9-di-n-octyl-2,7-fluorene). Macromolecules 37, 6833–6838 (2004).

    CAS 

    Google Scholar 

  • Curtis, M. D., Cao, J. & Kampf, J. W. Solid-state packing of conjugated oligomers: from π-stacks to the herringbone structure. J. Am. Chem. Soc. 126, 4318–4328 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Tian, W., Zhao, C., Leng, J., Cui, R. & Jin, S. Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates. J. Am. Chem. Soc. 137, 12458–12461 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Mikhnenko, O. V., Blom, P. W. & Nguyen, T.-Q. Exciton diffusion in organic semiconductors. Energy Environ. Sci. 8, 1867–1888 (2015).

    Google Scholar 

  • Tamai, Y., Ohkita, H., Benten, H. & Ito, S. Exciton diffusion in conjugated polymers: from fundamental understanding to improvement in photovoltaic conversion efficiency. J. Phys. Chem. Lett. 6, 3417–3428 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Sneyd, A. J. et al. Efficient energy transport in an organic semiconductor mediated by transient exciton delocalization. Sci. Adv. 7, eabh4232 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Mello, J. C., Wittmann, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230–232 (1997).

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *