Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).
Google Scholar
Neo, W. T., Ye, Q., Chua, S.-J. & Xu, J. Conjugated polymer-based electrochromics: materials, device fabrication and application prospects. J. Mater. Chem. C 4, 7364–7376 (2016).
Google Scholar
Bian, G., Yin, J. & Zhu, J. Recent advances on conductive 2D covalent organic frameworks. Small 17, 2006043 (2021).
Google Scholar
Wang, M., Dong, R. & Feng, X. Two-dimensional conjugated metal–organic frameworks (2D c-MOFs): chemistry and function for MOFtronics. Chem. Soc. Rev. 50, 2764–2793 (2021).
Google Scholar
Yao, Z.-F. et al. Wafer‐scale fabrication of high‐performance n‐type polymer monolayer transistors using a multi‐level self‐assembly strategy. Adv. Mater. 31, 1806747 (2019).
Sajjad, M. T., Ruseckas, A. & Samuel, I. D. Enhancing exciton diffusion length provides new opportunities for organic photovoltaics. Matter 3, 341–354 (2020).
Flanders, N. C. et al. Large exciton diffusion coefficients in two-dimensional covalent organic frameworks with different domain sizes revealed by ultrafast exciton dynamics. J. Am. Chem. Soc. 142, 14957–14965 (2020).
Google Scholar
MacFarlane, L., Zhao, C., Cai, J., Qiu, H. & Manners, I. Emerging applications for living crystallization-driven self-assembly. Chem. Sci. 12, 4661–4682 (2021).
Google Scholar
Qiu, H. et al. Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends. Science 352, 697–701 (2016).
Google Scholar
He, X. et al. Two-dimensional assemblies from crystallizable homopolymers with charged termini. Nat. Mater. 16, 481–488 (2017).
Google Scholar
Tong, Z. et al. Uniform segmented platelet micelles with compositionally distinct and selectively degradable cores. Nat. Chem. 15, 824–831 (2023).
Google Scholar
MacFarlane, L. R. et al. Functional nanoparticles through π-conjugated polymer self-assembly. Nat. Rev. Mater. 6, 7–26 (2021).
Google Scholar
Kamps, A. C., Fryd, M. & Park, S.-J. Hierarchical self-assembly of amphiphilic semiconducting polymers into isolated, bundled, and branched nanofibers. ACS Nano 6, 2844–2852 (2012).
Google Scholar
Fukui, T. et al. Seeded self-assembly of charge-terminated poly (3-hexylthiophene) amphiphiles based on the energy landscape. J. Am. Chem. Soc. 142, 15038–15048 (2020).
Google Scholar
Han, L. et al. Uniform two-dimensional square assemblies from conjugated block copolymers driven by π–π interactions with controllable sizes. Nat. Commun. 9, 865 (2018).
Google Scholar
Qi, R., Zhu, Y., Han, L., Wang, M. & He, F. Rectangular platelet micelles with controlled aspect ratio by hierarchical self-assembly of poly (3-hexylthiophene)-b-poly(ethylene glycol). Macromolecules 53, 6555–6565 (2020).
Google Scholar
Li, H., Han, L., Zhu, Y., Fernández-Trillo, P. & He, F. Transformation from rod-like to diamond-like micelles by thermally induced nucleation self-assembly. Macromolecules 54, 5278–5285 (2021).
Google Scholar
Yang, S., Kang, S.-Y. & Choi, T.-L. Morphologically tunable square and rectangular nanosheets of a simple conjugated homopolymer by changing solvents. J. Am. Chem. Soc. 141, 19138–19143 (2019).
Google Scholar
Yang, S., Kang, S.-Y. & Choi, T.-L. Semi-conducting 2D rectangles with tunable length via uniaxial living crystallization-driven self-assembly of homopolymer. Nat. Commun. 12, 2602 (2021).
Google Scholar
Yun, N. et al. Size-tunable semiconducting 2D nanorectangles from conjugated polyenyne homopolymer synthesized via cascade metathesis and metallotropy polymerization. J. Am. Chem. Soc. 145, 9029–9038 (2023).
Google Scholar
Jin, X.-H. et al. Long-range exciton transport in conjugated polymer nanofibers prepared by seeded growth. Science 360, 897–900 (2018).
Google Scholar
Zhang, Y. et al. Efficient energy funneling in spatially tailored segmented conjugated block copolymer nanofiber–quantum dot or rod conjugates. J. Am. Chem. Soc. 143, 7032–7041 (2021).
Google Scholar
Chen, S., Su, A., Su, C. & Chen, S. Phase behavior of poly(9,9-di-n-hexyl-2,7-fluorene). J. Phys. Chem. B 110, 4007–4013 (2006).
Google Scholar
Chen, S., Chou, H., Su, A. & Chen, S. Molecular packing in crystalline poly(9,9-di-n-octyl-2,7-fluorene). Macromolecules 37, 6833–6838 (2004).
Google Scholar
Curtis, M. D., Cao, J. & Kampf, J. W. Solid-state packing of conjugated oligomers: from π-stacks to the herringbone structure. J. Am. Chem. Soc. 126, 4318–4328 (2004).
Google Scholar
Tian, W., Zhao, C., Leng, J., Cui, R. & Jin, S. Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates. J. Am. Chem. Soc. 137, 12458–12461 (2015).
Google Scholar
Mikhnenko, O. V., Blom, P. W. & Nguyen, T.-Q. Exciton diffusion in organic semiconductors. Energy Environ. Sci. 8, 1867–1888 (2015).
Tamai, Y., Ohkita, H., Benten, H. & Ito, S. Exciton diffusion in conjugated polymers: from fundamental understanding to improvement in photovoltaic conversion efficiency. J. Phys. Chem. Lett. 6, 3417–3428 (2015).
Google Scholar
Sneyd, A. J. et al. Efficient energy transport in an organic semiconductor mediated by transient exciton delocalization. Sci. Adv. 7, eabh4232 (2021).
Google Scholar
de Mello, J. C., Wittmann, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230–232 (1997).