• May 17, 2025
  • Live Match Score
  • 0


  • Huang, Z. et al. Enhancing the spin-orbit coupling in Fe3O4 epitaxial thin films by interface engineering. ACS Appl. Mater. Interfaces 8, 27353–27359 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834 (1999).

    Article 
    CAS 

    Google Scholar 

  • Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Choi, Y. G. et al. Observation of the orbital Hall effect in a light metal Ti. Nature 619, 52–56 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wiesendanger, R. et al. Topographic and magnetic-sensitive scanning tunneling microscope study of magnetite. Science 255, 583–586 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kaiser, U., Schwarz, A. & Wiesendanger, R. Magnetic exchange force microscopy with atomic resolution. Nature 446, 522–525 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Funk, T., Deb, A., George, S. J., Wang, H. & Cramer, S. P. X-ray magnetic circular dichroism—a high energy probe of magnetic properties. Coord. Chem. Rev. 249, 3–30 (2005).

    Article 
    CAS 

    Google Scholar 

  • Midgley, P. A. & Dunin-Borkowski, R. E. Electron tomography and holography in materials science. Nat. Mater. 8, 271–280 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kohno, Y., Seki, T., Findlay, S. D., Ikuhara, Y. & Shibata, N. Real-space visualization of intrinsic magnetic fields of an antiferromagnet. Nature 602, 234–239 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tanigaki, T. et al. Electron holography observation of individual ferrimagnetic lattice planes. Nature 631, 521–525 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Krizek, F. et al. Atomically sharp domain walls in an antiferromagnet. Sci. Adv. 8, 3535 (2022).

    Article 

    Google Scholar 

  • Schattschneider, P. et al. Detection of magnetic circular dichroism using a transmission electron microscope. Nature 441, 486–488 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rusz, J., Eriksson, O., Novák, P. & Oppeneer, P. M. Sum rules for electron energy loss near edge spectra. Phys. Rev. B 76, 060408 (2007).

    Article 

    Google Scholar 

  • Calmels, L. et al. Experimental application of sum rules for electron energy loss magnetic chiral dichroism. Phys. Rev. B 76, 60409 (2007).

    Article 

    Google Scholar 

  • Nellist, P. D. et al. Direct sub-ångström imaging of a crystal lattice. Science 305, 1741 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Song, D., Wang, Z. & Zhu, J. Magnetic measurement by electron magnetic circular dichroism in the transmission electron microscope. Ultramicroscopy 201, 1–17 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rusz, J. et al. Localization of magnetic circular dichroic spectra in transmission electron microscopy experiments with atomic plane resolution. Phys. Rev. B 95, 174412 (2017).

    Article 

    Google Scholar 

  • Wang, Z. et al. Atomic scale imaging of magnetic circular dichroism by achromatic electron microscopy. Nat. Mater. 17, 221–225 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thersleff, T., Rusz, J., Hjörvarsson, B. & Leifer, K. Detection of magnetic circular dichroism with subnanometer convergent electron beams. Phys. Rev. B 94, 134430 (2016).

    Article 

    Google Scholar 

  • Rusz, J. et al. Magnetic measurements with atomic-plane resolution. Nat. Commun. 7, 12672 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Desjonquères, M. C., Barreteau, C., Autès, G. & Spanjaard, D. Orbital contribution to the magnetic properties of iron as a function of dimensionality. Phys. Rev. B 76, 024412 (2007).

    Article 

    Google Scholar 

  • Schattschneider, P. et al. Magnetic circular dichroism in EELS: towards 10 nm resolution. Ultramicroscopy 108, 433–438 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ali, H. et al. Single scan STEM-EMCD in 3-beam orientation using a quadruple aperture. Ultramicroscopy 251, 113760 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ali, H., Warnatz, T., Xie, L., Hjörvarsson, B. & Leifer, K. Quantitative EMCD by use of a double aperture for simultaneous acquisition of EELS. Ultramicroscopy 196, 192–196 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ali, H., Rusz, J., Warnatz, T., Hjörvarsson, B. & Leifer, K. Simultaneous mapping of EMCD signals and crystal orientations in a transmission electron microscope. Sci. Rep. 11, 2180 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wertheim, G. K., Butler, M. A., West, K. W. & Buchanan, D. N. E. Determination of the Gaussian and Lorentzian content of experimental line shapes. Rev. Sci. Instrum. 45, 1369–1371 (1974).

    Article 

    Google Scholar 

  • Thersleff, T. et al. Single-pass STEM-EMCD on a zone axis using a patterned aperture: progress in experimental and data treatment methods. Sci. Rep. 9, 18170 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lidbaum, H. et al. Quantitative magnetic information from reciprocal space maps in transmission electron microscopy. Phys. Rev. Lett. 102, 037201 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Chen, C. T. et al. Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. Phys. Rev. Lett. 75, 152–155 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rusz, J. et al. Influence of plural scattering on the quantitative determination of spin and orbital moments in electron magnetic chiral dichroism measurements. Phys. Rev. B 83, 132402 (2011).

    Article 

    Google Scholar 

  • Tischer, M. et al. Enhancement of orbital magnetism at surfaces: Co on Cu(100). Phys. Rev. Lett. 75, 1602 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koide, T. et al. Direct determination of interfacial magnetic moments with a magnetic phase transition in Co nanoclusters on Au(111). Phys. Rev. Lett. 87, 257201 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gambardella, P. et al. Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300, 1130–1133 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Edmonds, K. W. et al. Size dependence of the magnetic moments of exposed nanoscale iron particles. J. Magn. Magn. Mater. 231, 113–119 (2001).

    Article 
    CAS 

    Google Scholar 

  • Autès, G., Barreteau, C., Spanjaard, D. & Desjonquères, M. C. Magnetism of iron: from the bulk to the monatomic wire. J. Phys. Condens. Matter 18, 6785 (2006).

    Article 

    Google Scholar 

  • Xu, Y. B. et al. Giant enhancement of orbital moments and perpendicular anisotropy in epitaxial Fe/GaAs(100). J. Appl. Phys. 89, 7156–7158 (2001).

    Article 
    CAS 

    Google Scholar 

  • Löffler, S. et al. Real-space mapping of electronic orbitals. Ultramicroscopy 177, 26–29 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Iwashimizu, C., Haruta, M. & Kurata, H. Electron orbital mapping of SrTiO3 using electron energy-loss spectroscopy. Appl. Phys. Lett. 119, 232902 (2021).

    Article 
    CAS 

    Google Scholar 

  • Rusz, J. Modified automatic term selection v2: a faster algorithm to calculate inelastic scattering cross-sections. Ultramicroscopy 177, 20–25 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Muto, S., Tatsumi, K. & Rusz, J. Parameter-free extraction of EMCD from an energy-filtered diffraction datacube using multivariate curve resolution. Ultramicroscopy 125, 89–96 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pena, Fdela et al. Electron microscopy (big and small) data analysis with the open source software package HyperSpy. Microsc. Microanal. 23, 214–215 (2017).

    Article 

    Google Scholar 

  • Ali, H. et al. Visualizing sub-atomic orbital and spin moments using a scanning transmission electron microscope: data and methodology. Zenodo https://doi.org/10.5281/zenodo.14827898 (2025).

  • Keenan, M. R. & Kotula, P. G. Accounting for Poisson noise in the multivariate analysis of ToF-SIMS spectrum images. Surf. Interface Anal. 36, 203–212 (2004).

    Article 
    CAS 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *