
Huang, Z. et al. Enhancing the spin-orbit coupling in Fe3O4 epitaxial thin films by interface engineering. ACS Appl. Mater. Interfaces 8, 27353–27359 (2016).
Google Scholar
Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).
Google Scholar
Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019).
Google Scholar
Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834 (1999).
Google Scholar
Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).
Google Scholar
Choi, Y. G. et al. Observation of the orbital Hall effect in a light metal Ti. Nature 619, 52–56 (2023).
Google Scholar
Wiesendanger, R. et al. Topographic and magnetic-sensitive scanning tunneling microscope study of magnetite. Science 255, 583–586 (1992).
Google Scholar
Kaiser, U., Schwarz, A. & Wiesendanger, R. Magnetic exchange force microscopy with atomic resolution. Nature 446, 522–525 (2007).
Google Scholar
Funk, T., Deb, A., George, S. J., Wang, H. & Cramer, S. P. X-ray magnetic circular dichroism—a high energy probe of magnetic properties. Coord. Chem. Rev. 249, 3–30 (2005).
Google Scholar
Midgley, P. A. & Dunin-Borkowski, R. E. Electron tomography and holography in materials science. Nat. Mater. 8, 271–280 (2009).
Google Scholar
Kohno, Y., Seki, T., Findlay, S. D., Ikuhara, Y. & Shibata, N. Real-space visualization of intrinsic magnetic fields of an antiferromagnet. Nature 602, 234–239 (2022).
Google Scholar
Tanigaki, T. et al. Electron holography observation of individual ferrimagnetic lattice planes. Nature 631, 521–525 (2024).
Google Scholar
Krizek, F. et al. Atomically sharp domain walls in an antiferromagnet. Sci. Adv. 8, 3535 (2022).
Google Scholar
Schattschneider, P. et al. Detection of magnetic circular dichroism using a transmission electron microscope. Nature 441, 486–488 (2006).
Google Scholar
Rusz, J., Eriksson, O., Novák, P. & Oppeneer, P. M. Sum rules for electron energy loss near edge spectra. Phys. Rev. B 76, 060408 (2007).
Google Scholar
Calmels, L. et al. Experimental application of sum rules for electron energy loss magnetic chiral dichroism. Phys. Rev. B 76, 60409 (2007).
Google Scholar
Nellist, P. D. et al. Direct sub-ångström imaging of a crystal lattice. Science 305, 1741 (2004).
Google Scholar
Song, D., Wang, Z. & Zhu, J. Magnetic measurement by electron magnetic circular dichroism in the transmission electron microscope. Ultramicroscopy 201, 1–17 (2019).
Google Scholar
Rusz, J. et al. Localization of magnetic circular dichroic spectra in transmission electron microscopy experiments with atomic plane resolution. Phys. Rev. B 95, 174412 (2017).
Google Scholar
Wang, Z. et al. Atomic scale imaging of magnetic circular dichroism by achromatic electron microscopy. Nat. Mater. 17, 221–225 (2018).
Google Scholar
Thersleff, T., Rusz, J., Hjörvarsson, B. & Leifer, K. Detection of magnetic circular dichroism with subnanometer convergent electron beams. Phys. Rev. B 94, 134430 (2016).
Google Scholar
Rusz, J. et al. Magnetic measurements with atomic-plane resolution. Nat. Commun. 7, 12672 (2016).
Google Scholar
Desjonquères, M. C., Barreteau, C., Autès, G. & Spanjaard, D. Orbital contribution to the magnetic properties of iron as a function of dimensionality. Phys. Rev. B 76, 024412 (2007).
Google Scholar
Schattschneider, P. et al. Magnetic circular dichroism in EELS: towards 10 nm resolution. Ultramicroscopy 108, 433–438 (2008).
Google Scholar
Ali, H. et al. Single scan STEM-EMCD in 3-beam orientation using a quadruple aperture. Ultramicroscopy 251, 113760 (2023).
Google Scholar
Ali, H., Warnatz, T., Xie, L., Hjörvarsson, B. & Leifer, K. Quantitative EMCD by use of a double aperture for simultaneous acquisition of EELS. Ultramicroscopy 196, 192–196 (2019).
Google Scholar
Ali, H., Rusz, J., Warnatz, T., Hjörvarsson, B. & Leifer, K. Simultaneous mapping of EMCD signals and crystal orientations in a transmission electron microscope. Sci. Rep. 11, 2180 (2021).
Google Scholar
Wertheim, G. K., Butler, M. A., West, K. W. & Buchanan, D. N. E. Determination of the Gaussian and Lorentzian content of experimental line shapes. Rev. Sci. Instrum. 45, 1369–1371 (1974).
Google Scholar
Thersleff, T. et al. Single-pass STEM-EMCD on a zone axis using a patterned aperture: progress in experimental and data treatment methods. Sci. Rep. 9, 18170 (2019).
Google Scholar
Lidbaum, H. et al. Quantitative magnetic information from reciprocal space maps in transmission electron microscopy. Phys. Rev. Lett. 102, 037201 (2009).
Google Scholar
Chen, C. T. et al. Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. Phys. Rev. Lett. 75, 152–155 (1995).
Google Scholar
Rusz, J. et al. Influence of plural scattering on the quantitative determination of spin and orbital moments in electron magnetic chiral dichroism measurements. Phys. Rev. B 83, 132402 (2011).
Google Scholar
Tischer, M. et al. Enhancement of orbital magnetism at surfaces: Co on Cu(100). Phys. Rev. Lett. 75, 1602 (1995).
Google Scholar
Koide, T. et al. Direct determination of interfacial magnetic moments with a magnetic phase transition in Co nanoclusters on Au(111). Phys. Rev. Lett. 87, 257201 (2001).
Google Scholar
Gambardella, P. et al. Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300, 1130–1133 (2003).
Google Scholar
Edmonds, K. W. et al. Size dependence of the magnetic moments of exposed nanoscale iron particles. J. Magn. Magn. Mater. 231, 113–119 (2001).
Google Scholar
Autès, G., Barreteau, C., Spanjaard, D. & Desjonquères, M. C. Magnetism of iron: from the bulk to the monatomic wire. J. Phys. Condens. Matter 18, 6785 (2006).
Google Scholar
Xu, Y. B. et al. Giant enhancement of orbital moments and perpendicular anisotropy in epitaxial Fe/GaAs(100). J. Appl. Phys. 89, 7156–7158 (2001).
Google Scholar
Löffler, S. et al. Real-space mapping of electronic orbitals. Ultramicroscopy 177, 26–29 (2017).
Google Scholar
Iwashimizu, C., Haruta, M. & Kurata, H. Electron orbital mapping of SrTiO3 using electron energy-loss spectroscopy. Appl. Phys. Lett. 119, 232902 (2021).
Google Scholar
Rusz, J. Modified automatic term selection v2: a faster algorithm to calculate inelastic scattering cross-sections. Ultramicroscopy 177, 20–25 (2017).
Google Scholar
Muto, S., Tatsumi, K. & Rusz, J. Parameter-free extraction of EMCD from an energy-filtered diffraction datacube using multivariate curve resolution. Ultramicroscopy 125, 89–96 (2013).
Google Scholar
Pena, Fdela et al. Electron microscopy (big and small) data analysis with the open source software package HyperSpy. Microsc. Microanal. 23, 214–215 (2017).
Google Scholar
Ali, H. et al. Visualizing sub-atomic orbital and spin moments using a scanning transmission electron microscope: data and methodology. Zenodo https://doi.org/10.5281/zenodo.14827898 (2025).
Keenan, M. R. & Kotula, P. G. Accounting for Poisson noise in the multivariate analysis of ToF-SIMS spectrum images. Surf. Interface Anal. 36, 203–212 (2004).
Google Scholar